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Abstract

For a regular κ, we show that, under κ<κ = κ or b(κ) > κ+ as well as in any

κ-c.c. extension of a model of κ<κ = κ or b(κ) > κ+, there is no subset F of κκ

of cardinality κ+ such that F has less than κ many elements below every g ∈
κκ with respect to the partial ordering≤ on κκ by coordinatewise comparison.

By Lemma 3.5 in Karato [7], the non-existence of such F is equivalent to

〈Pκκ
+,⊆〉 6≤ 〈κκ,≤〉 in the Tukey ordering. Todorčević pointed out that this

condition is actually equivalent to what is called Galvin’s proposition for κ in

Abraham and Shelah [1]. Thus our arguments provide an alternative proof of

Galvin’s proposition. By this equivalence, a result in Abraham and Shelah [1]

reads e.g. that 〈Pωnωm,⊆〉 ≤ 〈ωnωn,≤〉 is consistent for any 1 ≤ n < m < ω.

We also show that 〈Pκλ,⊆〉 6≤ 〈κκ,≤〉 holds if λ has a certain large cardinal

property.

1 Introduction

The Tukey ordering ≤ on the class of (upward) directed sets is defined as follows

([9]):

For directed sets D = 〈D,≤D〉 and E = 〈E,≤E〉,

(1.1) D ≤ E ⇔ ∃f : E → D ∀d ∈ D ∃e ∈ E (f [E ↑ e] ⊆ D ↑ d).

Here, for a directed set D = 〈D,≤D〉 (or for a partial ordering more generally),

X ⊆ D and d ∈ D, we denote:

X ↑ d = {x ∈ X : d ≤D x} and X ↓ d = {x ∈ X : d ≥D x}.

f as above is called a convergent function. If D is downward complete (i.e. every

subset of D has its infimum with respect to ≤D) then the convergent function f in

(1.1) may be taken to be order preserving as well: simply replace f by the mapping

e 7→
∧∧

{f(e′) : e′ ∈ E ↑ e}.
For cardinals κ, λ with κ ≤ λ, let

κκ = {f : f : κ → κ} and Pκλ = {x ∈ P(λ) : |x | < κ}.

For f , g with dom(f) = dom(g) and rng(f), rng(g) ⊆ On, let
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(1.2) f ≤ g ⇔ f(x) ≤ g(x) for all x ∈ dom(f).

For a directed set D = 〈D,≤D〉, let

add(D) (= b(D)) = min{|X | : X ⊆ D is unbounded in D} and

cof(D) (= d(D)) = min{|X | : X ⊆ D is cofinal in D}.

Note that

(1.3) if D ≤ E then we have add(D) ≥ add(E) and cof(D) ≤ cof(E).

Karato [7] observed the following:

Lemma 1.1 (Lemma 3.5 in [7]) Suppose that κ is a regular cardinal and κ ≤ λ.

For a directed set D = 〈D,≤D〉 with add(D) ≥ κ the following are equivalent:

(a) There is an X ∈ [D]λ such that |X ↓ d | < κ for all d ∈ D;

(b) 〈Pκλ,⊆〉 ≤ D;

(c) There is an order preserving function f : D → Pκλ such that f [D] is cofinal in

Pκλ (with respect to ⊆).

Of course, each of (a) ∼ (c) implies that add(D) ≤ κ so that the lemma above is

only relevant for directed sets D with add(D) = κ.

By Lemma 1.1,

(1.4) 〈Pκλ,⊆〉 ≤ 〈Pκλ
′,⊆〉

for regular κ and λ, λ′ with κ ≤ λ ≤ λ′.

Also, since add(〈κκ,≤〉) = κ for a regular κ2) , it is easy to see by Lemma 1.1

that

(1.5) 〈Pκκ,⊆〉 ≤ 〈κκ,≤〉.

With these facts in background, Karato, the second author, asked if

(1.6) 〈Pκκ
+,⊆〉 ≤ 〈κκ,≤〉.

By Lemma 1.1, (1.6) is equivalent to the question whether the following holds:

2)Here, the partial ordering ≤ on κκ is defined by (1.2).
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(⋆⋆)κ : There is a family F ⊆ κκ such that | F | = κ+ and | F ↓ g | < κ for all

g ∈ κκ with respect to the ordering ≤ on κκ.

More generally for a regular cardinal κ and λ ≥ κ

(1.7) 〈Pκλ,⊆〉 ≤ 〈κκ,≤〉.

is equivalent to

(⋆⋆)κ,λ : There is a family F ⊆ κκ such that | F | = λ and | F ↓ g | < κ for all

g ∈ κκ with respect to the ordering ≤ on κκ.

In Sections 2, 3 we show that ¬(⋆⋆)κ holds under κ<κ = κ as well as in any c.c.c.

extension of a model of ¬(⋆⋆)κ.
In Section 5 we show that ¬(⋆⋆)κ is equivalent to what is called Galvin’s propo-

sition in Abraham and Shelah [1]. The models constructed in [1] provide a consis-

tency proof of (⋆⋆)κ and more for many κ. So e.g. for any 1 ≤ n < m < ω, we have

the consistency of 〈Pωnωm,⊆〉 ≤ 〈ωnωn,≤〉.
In Section 6, we show that ¬(⋆⋆)κ,λ holds for λ with certain large cardinal

properties.

The results in this note give an answer to the question the second author asked

during the set-theory meeting held at RIMS Kyoto, on October 10∼12, 2005.

Acknowledgments. The authors would like to thank RIMS and the orga-

nizer of the meeting Masahiro Shioya for giving them the opportunity to discuss

about this problem. They also thank David Asperó for communicating with Stevo

Todorčević who pointed out the connection of the question to Galvin’s proposition

and the results in [1]. The first author also would like to thank Yo Matsubara for

informing him about results in [4] and [8].

2 ¬(⋆⋆)κ under κ<κ = κ

In this and following sections we always assume that κ is regular.

For f , g ∈ κκ, let

f ≤∗ g ⇔ there is some ξ < κ such that f(α) ≤ g(α) for all α ∈ κ \ ξ.
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In [2], add(〈κκ, ≤∗〉) and cof(〈κκ, ≤∗〉) are denoted by b(κ) and d(κ) respec-

tively. In particular, b(ω) and d(ω) coincide with the usual bounding number b

and the dominating number d.

Lemma 2.1 Suppose that F ⊆ κκ is of cardinality ≥ κ+ and λ is a cardinal with

cof(λ) > κ and λ ≤ |F |. If F is bounded with respect to ≤∗ then there is a g ∈ κκ

such that F ↓ g = {f ∈ F : f ≤ g} has the cardinality ≥ λ.

Proof. Note that we have λ ≥ κ+. Let g0 ∈ κκ be such that f ≤∗ g0 for all f ∈ F .

For each f ∈ F , let αf < κ be such that

f(α) ≤ g0(α) for all α ∈ κ \ αf .

Since | F | ≥ λ ≥ κ+, there is an F ′ ⊆ F of cardinality ≥ λ and α∗ < κ such that

αf = α∗ for all f ∈ F ′. Now for each f ∈ F ′ let

βf = sup{f(γ) : γ < α∗}.

Since κ is regular, we have βf < κ for all f ∈ F ′. Hence there is F ′′ ⊆ F ′ of

cardinality ≥ λ and a β∗ < κ such that βf = β∗ for all f ∈ F ′′. Let

g = {〈γ, β∗〉 : γ < α∗} ∪ g0 ↾ (κ \ α∗).

Then F ↓ g ⊇ F ′′ ↓ g = F ′′. It follows that

| F ↓ g | ≥ |F ′′ | ≥ λ. (Lemma 2.1)

Theorem 2.2 ¬(⋆⋆)ω .

Proof. Suppose that F ⊆ ωω with | F | ≥ ω1. Let P be a c.c.c. poset forcing

b >
(
2ℵ0

)V
. Then

‖–P “F is bounded with respect to ≤∗ ”.

By Lemma 2.1, there is a P-name g
∼
of a function from ω to ω such that

‖–P “F ↓ g
∼
is uncountable ”.

Let 〈pi : i ∈ ω〉, 〈fi : i ∈ ω〉 and 〈ni : i ∈ ω〉 be such that

(2.1) 〈pi : i ∈ ω〉 is a decreasing sequence in P;
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(2.2) 〈fi : i ∈ ω〉 is a sequence of distinct elements of F ;

(2.3) pi ‖–P “ g
∼
(i) = ni ” and

(2.4) pi ‖–P “ fi ∈ F ↓ g
∼
” for all i ∈ ω.

Let g : ω → ω be defined by g(i) = ni for all i ∈ ω. Then we have

F ↓ g ⊇ {fi : i ∈ ω}.

In particular, | F ↓ g | ≥ ℵ0. Since F was arbitrary it follows that ¬(⋆⋆)ω.
(Theorem 2.2)

By Lemma 7 in [2], if κ<κ = κ then there is a κ-closed κ+-c.c. poset P such that

‖–P “ b(κ) > (2κ)V ”. Using such a P, we can argue similarly to the proof of Lemma

2.2 to show that ¬(⋆⋆)κ holds. This idea proves the following Theorem 2.3.

The second author obtained Lemma 2.1, and Theorem 2.2 with a slightly dif-

ferent proof. The first and third authors found then independently the above

mentioned forcing proof of the following Theorem 2.3 which extends Theorem 2.2.

Finally the third and fourth author found a proof of the theorem without the

forcing which is presented below.

Theorem 2.3 Suppose that F ⊆ κκ and | F | > κ<κ. Then there is a g ∈ κκ such

that | F ↓ g | ≥ κ.

Proof. For φ ∈ κ>κ let

Fφ = {f ∈ F : f ↾ domφ ≤ φ}.

By the assumption on the cardinality of F , F \
∪
{Fφ : φ ∈ κ>κ, | Fφ | < κ} is

nonempty. Fix a

g∗ ∈ F \
∪
{Fφ : φ ∈ κ>κ, | Fφ | < κ}.

Note that

Claim 2.3.1 For any φ ∈ κ>κ, if g∗ ↾ dom(φ) ≤ φ then | Fφ | ≥ κ.

For α < κ let φα ∈ κ>κ and gα ∈ F be taken inductively such that

(2.5) g0 = g∗ and φ0 = ∅;
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(2.6) φα+1 = φα ∪ {〈α, sup{gβ(α) : β ≤ α}〉};

(2.7) gα ∈ Fφα \ {gβ : β < α};

(2.8) φγ =
∪
{φα : α < γ} if γ < κ is a limit.

Note that (2.7) is always possible because of Claim 2.3.1.

Let g =
∪
{φα : α < κ}. Then we have

F ↓ g ⊇ {gα : α < κ}

by (2.6). By (2.7), it follows that | F ↓ g | ≥ | {gα : α < κ} | = κ. (Theorem 2.3)

Corollary 2.4 (κ<κ = κ) ¬(⋆⋆)κ.

Proof. By Theorem 2.3. (Lemma 2.4)

The next lemma is a direct consequence of Lemma 2.1:

Lemma 2.5 Suppose that F ⊆ κκ and λ = | F |. If either cof(λ) > κ and λ < b(κ)

or d(κ) < cf(λ) then there is a g ∈ κκ such that | F ↓ g | = λ.

Proof. By Lemma 2.1, it is enough to show that there is an F ′ ∈ [F ]λ which is

bounded with respect to ≤∗.

If λ < b(κ), then F is bounded with respect to ≤∗ by definition of b(κ).

If d(κ) < cf(λ) then let X be cofinal in κκ (with respect to ≤∗) with

(2.9) |X | < cf(λ).

For each f ∈ F there is hf ∈ X such that f ≤∗ hf . By (2.9) there is F ′ ∈ [F ]λ

such that hf , f ∈ F ′ is constant. (Lemma 2.5)

Corollary 2.6 (a) If (⋆⋆)κ then b(κ) = κ+.

(b) If (⋆⋆)κ,λ for some λ ≥ κ, then λ ≤ d(κ).

3 Preservation of ¬(⋆⋆)κ in generic extensions

Proposition 3.1 Suppose that ¬(⋆⋆)κ holds and P is a κ-c.c. poset. Then we have

‖–P “¬(⋆⋆)κ holds ”.

7



Proof. Suppose that ‖–P “ F
∼

∈ [κκ]κ
+
” for a P-name F

∼
.

Let 〈f
∼

ξ : ξ < κ+〉 be a sequence of P-names such that

‖–P “ 〈f
∼

ξ : ξ < κ+〉 is an injective sequence of elements of F
∼

”.

For each ξ < κ+, let f ∗
ξ ∈ κκ be such that

‖–P “ f
∼

ξ(α) ≤ f ∗
ξ (α) for all α < κ ”.

This is possible by the κ-c.c. of P.
If there is an X ∈ [κ+]κ

+
and f ∈ κκ such that f ∗

ξ = f for all ξ ∈ X then

‖–P “ ∀ξ ∈ X (f
∼

ξ ≤ f) ”

and thus ‖–P “ F
∼

is not a witness for (⋆⋆)κ ”.

Otherwise there is a Y ∈ [κ+]κ
+
such that f ∗

ξ , ξ ∈ Y are pairwise distinct. By

¬(⋆⋆)κ (in the ground model) there is a Z ∈ [Y ]κ and g ∈ κκ such that f ∗
ξ ≤ g for

all ξ ∈ Z. But then

‖–P “ ∀ξ ∈ Z (f
∼

ξ ≤ g) ”.

Hence again we have ‖–P “ F
∼

is not a witness for (⋆⋆)κ ”.

Since the P-name F
∼

for a subset of κκ of cardinality of κ+ was arbitrary, it

follows that ‖–P “¬(⋆⋆)κ ”. (Proposition 3.1)

From Proposition 3.1 and Theorem 2.3, it follows that ¬(⋆⋆)ω1 holds e.g. in a Cohen

or random model (obtained by starting from a model M of CH and then by adding

more than ℵ2 Cohen or random reals to M). Similarly, if we start from a model of

GCH with a measurable cardinal λ and force with the measure algebra of Maharam

type λ, we obtain a model of real valued measurability in which ¬(⋆⋆)κ holds for

every regular uncountable κ. The last property also holds in a standard model of

Martin’s axiom + ¬CH provided that we start from a model of GCH. Note that

we have e.g. ω<ω1
1 > ω1 in these models.

4 κκ with almost dominance

We might also consider the following weakening of (⋆⋆)κ :
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(⋆⋆⋆)κ : There is a family F ⊆ κκ such that | F | = κ+ and | F ↓ g | ≤ κ for all

g ∈ κκ with respect to the ordering ≤ on κκ.

This assertion can be characterized as a condition on the size of the bounding

number b(κ) of 〈κκ,≤∗〉 :

Proposition 4.1 The following are equivalent:

(a) (⋆⋆⋆)κ ;

(b) 〈Pκ+κ+,⊆〉 ≤ 〈κκ,≤∗〉 ;

(c) b(κ) = κ+.

This follows from the next characterization of b(κ):

Lemma 4.2 b(κ) = min{|F | : F ⊆ κκ, | F | > κ, ∀f ∈ κκ | F ↓ f | < | F |}.

Proof. Let b′ be the right side of the equation. We show first the inequality

b(κ) ≤ b′. Suppose that κ < λ < b(κ) and λ is regular. For any F ⊆ κκ, if

| F | = λ then F is bounded (with respect to ≤∗). By Lemma 2.1, there is an

f ∈ κκ such that | F ↓ f | = λ = | F |. Hence λ < b′. This shows b(κ) ≤ b′.

Next, we show b(κ) ≥ b′. Let 〈fα : α < b(κ)〉 be an increasing sequence (with

respect to ≤∗) such that {fα : α < b(κ)} does not have any upper bound (with

respect to ≤∗). Then {α < b(κ) : fα ≤ f} is bounded in b(κ) for any f ∈ κκ. This

shows that b′ ≤ b(κ). (Lemma 4.2)

Proof of Proposition 4.1: (a) ⇒ (c): Suppose b(κ) > κ+. For any F ⊆ κκ of

cardinality > κ, let F ′ ⊆ F be of cardinality κ+. F ′ is bounded with respect to

≤∗. Hence by Lemma 2.1 there is an f ∈ κκ such that | F ′ ↓ f | = κ+. Thus (⋆⋆⋆)κ

does not hold.

(c) ⇒ (b): Recall that b(κ) = add(〈κκ,≤∗〉). If b(κ) = κ+ there is an increasing

sequence 〈fα : α < κ+〉 in 〈κκ,≤∗〉 such that X = {fα : α < κ+} is unbounded.

Clearly X satisfies the condition of Lemma 1.1, (a) for κ there replaced with κ+

and λ = κ+. It follows that 〈Pκ+κ+,⊆〉 ≤ 〈κκ,≤∗〉.
(b) ⇒ (c): Assume that 〈Pκ+κ+,⊆〉 ≤ 〈κκ,≤∗〉. By (1.3), it follows that

b(κ) = add(〈κκ,≤∗〉) ≤ add(〈Pκ+κ+,⊆〉) = κ+.

(c) ⇒ (a): Suppose b(κ) = κ+. Then, by Lemma 4.2, there is F ⊆ κκ of

cardinality κ+ such that | F ↓ f | ≤ κ. Thus (⋆⋆⋆)κ holds. (Lemma 4.1)
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5 Galvin’s proposition

After we had written up the previous sections, David Asperó told us that Stevo

Todorčević pointed out that the consistency of (⋆⋆)κ for may κ follows from the

results in [1]. The main point of Todorčević’s remark actually amounts to the

equivalence of ¬(⋆⋆)κ with the following assertion cited in [1] as “Galvin’s propo-

sition”:

(G)κ : For any family C of club subsets of κ with | C | ≥ κ+ there is an C ′ ∈ [C]κ

such that
∩

C ′ contains a club subset of κ.

For κ < λ we can also consider the following generalization of (G)κ:

(G)κ,λ : For any family C of club subsets of κ with | C | ≥ λ there is an C ′ ∈ [C]κ

such that
∩

C ′ contains a club subset of κ.

Thus (G)κ is just (G)κ,κ+ .

Theorem 5.1 For any regular uncountable κ and λ > κ, the following are equi-

valent:

(a) 〈Pκλ, ⊆〉 ≤ 〈κκ,≤〉;
(b) (⋆⋆)κ,λ;

(c) ¬(G)κ,λ.

It follows that the proof of Theorem 2.3 (and Corollary 2.4) just provides an

alternative proof of Galvin’s proposition.

Theorem 5.1 follows from the next Lemma 5.2.

Let κ be an uncountable regular cardinal. Let Cκ = {C : C ⊆ κ, C is a club}.
Let Φκ : Cκ → κκ and Ψκ : κκ → Cκ be mappings defined by

(5.1) Φκ(C)(ξ) = min (C \ (ξ + 1)) for C ∈ Cκ and ξ < κ, and

(5.2) Ψκ(f) = {ξ < κ : ∀η < ξ (f(η) ≤ ξ)} for f ∈ κκ.

Lemma 5.2 (1) Φκ is an order preserving map from 〈Cκ,⊇〉 to 〈κκ,≤〉; Ψκ is an

order preserving map from 〈κκ,≤〉 to 〈Cκ,⊇〉.

(2) For any C ∈ Cκ, Ψκ(Φκ(C)) = C; For any f ∈ κκ, Φκ(Ψκ(f)) ≥ f .
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(3) Φκ[Cκ] is cofinal in 〈κκ, ≤〉; Ψκ [
κκ] is cofinal in 〈Cκ, ⊇〉. In particular, Φκ

and Ψκ are convergent functions.

(4) 〈κκ, ≤〉 and 〈Cκ, ⊇〉 are cofinally similar (i.e. equivalent with respect to the

Tukey ordering).

Proof. (1) is clear. (3) follows from (2) and (4) from (3). So it is enough to show

(2):

Suppose first that C ∈ Cκ. Then we have

ξ ∈ Ψκ(Φκ(C)) ⇔ ∀η < ξ (Φκ(C)(η) ≤ ξ)

⇔ ∀η < ξ (min(C \ (η + 1)) ≤ ξ)

⇔ ξ ∈ C.

Thus, we have C = Ψκ(Φκ(C)).

Suppose now f ∈ κκ. Then, for ξ < κ, we have

Φκ(Ψκ(f))(ξ) = min(Ψκ(f) \ (ξ + 1))

= min{η ∈ κ \ (ξ + 1) : ∀ζ < η f(ζ) ≤ η}

≥ f(ξ).

(Lemma 5.2)

Theorem 5.1 follows now from Lemma 5.2 and Lemma 1.1.

For many uncountable regular κ, Abraham and Shelah gave in [1] a model of

set-theory in which the negation of Galvin’s proposition for κ (i.e. ¬(G)κ in our

notation) holds. More precisely:

Theorem 5.3 (Theorem 1.1 in Abraham and Shelah [1]) Assume GCH. Then for

a regular cardinal κ and λ > κ with cf(λ) ≥ κ+ there is a p.o.-set P which does

not add any κ sequences and preserves all cardinals such that

‖–P “ 2
κ+

= λ and ¬(G)κ+,λ holds ”.

By Theorem 5.1, it follows e.g.:

Corollary 5.4 For any natural numbers 1 ≤ n < m < ω, the assertion (⋆⋆)ωn,ωm

is consistent with ZFC.
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Starting from a model of GCH, Abraham and Shelah also constructed in [1] a model

of ¬(G)ω1,λ for λ > ω1 such that the failure of Galvin’s proposition is absolute for

further extensions:

Theorem 5.5 (Theorem 2.2 in Abraham and Shelah [1]) Assume that V |= ZFC+

GCH and λ is a cardinal ≥ ω2 in V . Then there is a generic extension W of

V preserving cardinals such that W |= ¬(G)ω1,λ (and more see [1]) and for any

further generic extension W ′ of W we have W ′ |= ¬(G)ω1,λ provided that ω1 and

“ |λ | > ω1” are preserved.

In [1] the model was constructed starting from V = L but by virtue of Shelah’s

Club Guessing Lemma now available, a model of GCH (actually less than that) is

enough to start with.

This result combined with the usual construction of a model of MA implies the

following:

Corollary 5.6 For any n ≥ 1 (⋆⋆)ω1,ωn is consistent with ¬CH + MA.

Corollary 5.6 together with the remark at the end of Section 3 prove the next

corollary:

Corollary 5.7 (⋆⋆)ω1 is independent from ZFC + ¬CH + MA.

We can also start from a model of GCH with a measurable cardinal κ and make

e.g. ¬(G)ω1,ω2 indestructible first and then force with the measure algebra with

Maharam type κ to obtain a model of real-valued measurability (and ¬(G)ω1,ω2).

This together with the remark at the end of Section 3 proves the following:

Corollary 5.8 (⋆⋆)ω1 is independent from ZFC + “ 2ℵ0 is real-valued measurable”.

The following shows that ω<ω1
1 = ω1 in the ground model for the construction

of b(ω1) > ω2 in [2] is necessary.

Corollary 5.9 Let W be a model as in Theorem 5.5 for a λ ≥ ω2. Then we have

b(ω1) = ω2 in any generic extension of W preserving ω1 and “λ > ω1”.
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Proof. By Corollary 2.6, (a). (Corollary 5.9)

The following questions seem to be still open:

Problem 5.10 Is MM consistent with ¬(⋆⋆)ω1 or does MM even imply ¬(⋆⋆)ω1 ?

Problem 5.11 Is MA consistent with (⋆⋆)ω1,2ℵ0 ?

6 ¬(⋆⋆)κ,λ for λ with large cardinal properties

In this section we show that ¬(⋆⋆)κ,λ holds if there is an ideal over λ with certain

precipitousness.

An ideal I over a cardinal λ is said to be δ-strategically closed if the player

Nonempty has a winning strategy in the following infinitary game over the partial

ordering PI = 〈PI ,≤PI
〉 where

(6.1) PI = (P(λ)/I) \ {∅/I}

and ≤PI
is defined by

(6.2) X/I ≤PI
Y/I ⇔ X \ Y ∈ I.

The player Empty begins the game with his move p0 ∈ PI . At α = 1+ξ+2n+1’st

move for a limit ordinal ξ < δ (or ξ = 0) and n ∈ ω, the player Empty plays

pα ∈ PI ; Nonempty plays pα ∈ PI at α = 1 + ξ + 2n’th move; each pα must be

below the previous moves pξ, ξ < α (with respect to ≤PI
) so that pξ, ξ < α form a

decreasing sequence in PI for all α < δ. Nonempty wins if the game can be played

through all the moves pξ, ξ < δ. Note that pξ at all limit ξ < δ is Nonempty’s

move as far as the game is played that far.

See e.g. [5], [10] for more about this game. κ-strategically closed ideals in our

terminology are called ≺κ-strategically closed ideals in [8].

An ideal I over λ is µ-complete if
∪
X ∈ I for all X ∈ [I]<µ. I is precipitous

if any generic ultrapower constructed on the basis of any (V,PI)-generic filter is

well-founded.

It follows from a characterization of precipitousness that λ-complete (ω + 1)-

strategically closed ideals are precipitous. Note that by definition if PI is δ-

strategically closed and δ′ ≤ δ then PI is δ′-strategically closed.
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Lemma 6.1 Suppose that there is a κ-strategically closed κ+-complete ideal I over

κ+. Then κ<κ = κ.

Proof. Let PI = (P(κ+)/I) \ {∅/I} and G be a (V,PI)-generic filter. Let G̃ be the

the corresponding filter over κ+ and M be (the Mostowski collapse of) the generic

ultrapower associated with G̃ and j : V → M the be the canonical embedding of

V into M . We have crit(j) = κ+.

Suppose toward a contradiction that κ<κ > κ. Let λ = κ<κ and let 〈φα : α < λ〉
be an injective enumeration of κ>κ. Let

〈φ̃α : α < j(λ)〉 = j(〈φα : α < λ〉).

Since κ < crit(j) we have φ̃j(α) = φα for all α < λ. We have κ+ ≤ λ by assumption.

Hence κ+ < j(κ+) ≤ j(λ). By the κ-strategical closedness of I we have φ̃κ+ ∈ V .

But since κ+ 6∈ j ′′V and since

M |= 〈φ̃α : α < j(λ)〉 is injective

by elementarity,

M |= φ̃κ+ 6= φ̃j(α) for all α < λ.

It follows that φ̃κ+ 6= φα for all α < λ (in V ). This is a contradiction.

(Lemma 6.1)

Corollary 6.2 Suppose that there is a κ-strategically closed κ+-complete ideal I

over κ+. Then ¬(⋆⋆)κ holds.

Proof. By Lemma 6.1 and Corollary 2.4. (Corollary 6.2)

The constellation of Corollary 6.2 can be created under a measurable cardinal: if

a measurable cardinal λ is collapsed to κ+ for a regular uncountable κ below λ by

Coll(κ,<λ), then the ideal I generated from a regular ideal on λ in the ground

model is κ-strategically closed and κ+-complete (see [4] or [8]).

An ideal I over λ is said to be µ-saturated if PI has the µ-c.c. where PI is defined

as in (6.1) and (6.2). It is known that λ+-saturated ideal over λ is precipitous.

If λ is a measurable cardinal and we force with a κ-c.c. poset then in the generic

extension the ideal generated from a maximal regular ideal over κ in the ground

model is κ-saturated and λ-complete (see Theorem 17.1 in [6]).
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Proposition 6.3 Suppose that κ and λ are regular cardinals with ω1 ≤ κ < λ ≤
2ℵ0. If there is a κ-saturated λ-complete ideal I on P(λ). Then ¬(⋆⋆)κ,λ holds.

Furthermore, the following holds:

For every F ∈ [κκ]λ, there is a g ∈ κκ such that | F ↓ g | = λ.

Proof. Let I be as in the proposition. I is precipitous by the remark above the

proposition. Let G a (V,PI)-generic filter and let j : V → M be the corresponding

generic ultrapower. We have crit(j) = λ.

Suppose that 〈fα : α < λ〉 is an enumeration of a family F ∈ [κκ]λ. Let

〈f̃α : α < j(λ)〉 = j(〈fα : α < λ〉).

For α < λ, we have f̃α = fα by α, κ < crit(j). Let g
∼
be a PI-name of f̃λ. By the

κ-c.c. of PI , there is a g ∈ κκ (in V ) such that

‖–PI
“ g

∼
≤ g ”.

Now back in V [G], for any η < λ we have

M |= ∃ν < j(λ) (η < ν ∧ f̃ν ≤ g)

since f̃λ witnesses this. Hence by elementarity, we have

V |= ∃ν < λ (η < ν ∧ fν ≤ g).

Thus | F ↓ g | = λ. (Proposition 6.3)

Corollary 6.4 Suppose that κ and λ are regular cardinals with ω1 ≤ κ < λ ≤ 2ℵ0.

If λ is real-valued measurable then we have ¬(⋆⋆)κ,λ.

Proof. The null ideal over λ with respect to a real-valued measure over λ is ω1-

saturated. Hence by Proposition 6.3, ¬(⋆⋆)κ,λ follows. (Corollary 6.4)
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