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Abstract. Given a family F of pairwise almost disjoint (ad) sets on a countable
set S, we study families F of maximal almost disjoint (mad) sets extending F.

We define a*(F) to be the minimal possible cardinality of F \ F for such F
and at (k) = max{at(F) : |F| < x}. We show that all infinite cardinals less
than or equal to the continuum ¢ can be represented as a*(F) for some ad F
(Theorem 10) and that the inequalities R; = a < at(X1) = ¢ (Corollary 1) and
a=a"t(X;y) < ¢ (Theorem 9) are both consistent.

We also give several constructions of mad families with some additional prop-
erties.

1. Introduction

Given a family F of pairwise almost disjoint countable sets, we can ask how
the maximal almost disjoint (mad) families extending F look like. In this
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note and [5], we address some instances of this question and other related
problems.

Let us begin with the definition of some notions and notation about
almost disjointness we shall use here. Two countable sets A, B are said to
be almost disjoint (ad for short) if AN B is finite. A family F of countable
sets is said to be pairwise almost disjoint (ad for short) if any two distinct
A, B € F are ad.

If X C [S]M and S = X, F C X is said to be mad in X if F is ad
and there is no ad 7’ such that 7 G ' C X'. Thus an ad family F is mad
in X if and only if there is no X € X which is ad from every Y € F. If F
is mad in [S] for S = |JF, we say simply that F is a mad family (on S).
S is called the underlying set of F.

Let

(1.1)  a(X)=min{| F| : | F| >N and F is mad in X'}.

Clearly, the cardinal invariant a known as the almost disjoint number ([2])
can be characterized as:

Ezample 1. a = a([S]*°) for any countable S.

In this paper we concentrate on the case where the underlying set S =
UX (or S =JF) is countable. In [5] and the forthcoming continuation of
this paper, we will deal with the cases where S may be also uncountable.

As the countable S = |JX, we often use w or T = “>2 where T is
considered as a tree growing downwards. That is, for b, b’ € T, we write
b <pbif b C¥. Each f € “2 induces the (maximal) branch

(1.2) B(f)={fIn:new}CT

inT.

In Section 2, we consider several cardinal invariants of the form a(X’) for
some X C [T,

For X C [S]¥ with S = J &, let

(1.3) X+t={Y e[S : VX e X |XNY | <N}

If Y € X+ we shall say that Y is almost disjoint (ad) to X.
For an ad family F, let

(1.4) at(F)=a(Fh).
For a cardinal &, let
(1.5) a* (k) =sup{at(F) : Fis an ad family on w of cardinality < x}.

Clearly, a™(w) = a and a™ (k) < at(A\) < ¢ for any x < A < ¢. In Section
3 we give several constructions of ad families F for which F* has some
particular property. Using these constructions, we show in Section 4 that
at(¢) = ¢ (actually we have a* (o) = ¢, see Theorem 7) and the consistency
of the inequalities a = X; < a™(Ry) = ¢ (see Corollary 1). We also show the
consistency of a™(Xy) < ¢ (Theorem 9).
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For undefined notions connected to the forcing, the reader may consult
[7] or [8]. We mostly follow the notation and conventions set in [7] and/or [8].
In particular, the forcing is denoted in such a way that stronger conditions
are smaller. We assume that P-names are constructed just as in [8] for
a poset P but different from [8] we use symbols with tilde below them
like a, b etc. to denote the P-names corresponding to the sets a, b etc.

in the generic extension. V' denotes the ground model (in which we live).
The canonical P-names of elements a, b etc. of V' are denoted by the same
symbols with hat like @, b etc. For a poset P (in V) we use V' to denote a
“generic” generic extension V|G| of V' by some (V,P)-generic filter G. Thus
VP = ... is synonymous to |Fp“---”" or V = |[Fp“---” and a phrase
like: “Let W = VP is to be interpreted as saying: “Let W be a generic
extension of V' by some/any (V,P)-generic filter”.

For the notation connected to the set theory of reals see [1] and [2].
With ¢ we denote the size of the continuum 280, M and N are the ideals of
meager sets and null sets (e.g. over the Cantor space “2) respectively. For
I = M, N etc., cov(I) and non(I) are covering number and uniformity of
1.

For an infinite cardinal x let C, = Fn(k,2) or, more generally Cx =
Fn(X,2) for any set X. C, is the Cohen forcing for adding x many Cohen
reals. R, denotes the random forcing for adding x« many random reals.
R, is the poset consisting of Borel sets of positive measure in “2, which
corresponds to the homogeneous measure algebra of Maharam type k.

For a poset P = (P, <p), X CP and p € P, let

Xlp={qeX : q<pp}
2. Mad families and almost disjoint numbers

One of the advantages of using T' = “~2 as the countable underlying set is
that we can define some natural subfamilies of [T]NO such as Or, Ar, Br
etc. below.

For X C T, let

(2.1) [X]={fe€%“2: B(f) C X}, and
(22) [X1={f€“2: |B(f)nX]|="No}

Clearly, we have [X] C [X]. For X C T, let X! be the upward closure of
X, that is:

(23) X'={tIn:teX, n<l(t)}

Then we have [X] C [X] for any X C T.

Definition 1 (Off-binary sets, [9]). Let
Or ={X [T : [X] =0}

T. Leathrum [9] called elements of Op off-binary sets. Note that [X] =0
if and only if there is no branch in 7" with infinite intersection with X.
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Definition 2 (Antichains). Let
Ar = {X € [T|Y : X is an antichain in T?}.

Clearly, we have Ar C Or.
Using the notation above, the cardinal invariants o and o introduced by
Leathrum [9] can be characterized as:

(2.4) o=a(O7),
2.5) 6=a(Ar)

(
(see [9]). Leathrum also showed a < o < 0. J. Brendle [3] proved non(M) <
0.

Definition 3 (Sets without infinite antichains). Let
Br ={X € [T)® : X does not contain any infinite antichain}.

Note that Br = .ATL. Elements of By are those infinite subsets of T' which
can be covered by finitely may branches:

Lemma 1 (K. Kunen). Let X € [T|*. Then X € Br if and only if X is
covered by finitely may branches in T'.

Proof. If X is covered by finitely many branches in 7" then X clearly does
not contain any infinite antichain since otherwise one of the finitely many
branches would contain an infinite antichain.

Suppose now that X cannot be covered by finitely many branches. By
induction on n, we choose t,, € 2™ such that tg =0, t,.1 = t, ~ 4 for some
i€ 2 and

(2.6) X,n41 =X | tp41 can not be covered by finitely many branches.

This is possible since Xo = X and X, C (X, | (t, 7 0)U(X,, | (¢, 7 1)U
{tn}.

By (2.6), the branch B = {t,, : n < w} does not cover X,, for each
n € w. So we can pick s, € X, \ B. Let S = {s, : n € w}. S is an infinite
subset of X since ¢(s,) > n for all n € w. If C' is a branch in T different
from B then t,, ¢ C for some n € w and so s,,, ¢ C for all m > n. Hence
SN C is finite. Moreover S N B = . So we have [S] = §. Thus S should
contain an infinite antichain by Konig’s Lemma. O

Theorem 1 (K. Kunen). a(Br) =c.

Proof. Suppose that F C B is an ad family of cardinality < ¢. We show
that F is not mad. For each X € F there is by € [“2]<%0 such that X C
Ufepy B(f) by Lemma 1. Since S = [J{bx : X € F} has cardinality
<|F|-Rg <, there is f* € 2\ S. We have B(f*) € Br and B(f*) is ad
toF. O

Let us say X C T is nowhere dense if [X] is nowhere dense in the Cantor
space “2. It can be easily shown that X is nowhere dense if and only if
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(2.7) WteT I <ptVt" <pt' (t" € X).

Note that, if X C T is not nowhere dense, then X is dense below some t € T
(in terms of forcing). Also note that from (2.7) it follows that the property
of being nowhere dense is absolute.

Definition 4 (Nowhere dense sets). Let
NDr ={X € [T} : X is nowhere dense}.
Note that, for X € [T]*0 with X = {t,, : n € w}, we have

In particular [X] is a Gs subset of “2. Hence by Baire Category Theorem
we have

NDr = {X € [T)® : [X] is a meager subset of “2}.
Lemma 2. If X € [T then there is X' € [X|° such that X' € N'Dr.

Proof. If [X] = () then X € N'Dy. Thus we can put X’ = X. Otherwise let
fe[X]andlet X' =XNB(f). O

Theorem 2. cov(M), a < a(NDr).

Proof. For the inequality cov(M) < a(NDr), suppose that F C NDr is
an ad family of cardinality < cov(M). Then |J{[X]| : X € F} # “2. Let
Fe“2\U{IX] : X € F}. Then B(f) € NDr and B(f) is ad from all
XekF.

To show a < a(NDr) suppose that F C N'Dr is an ad family of car-
dinality < a. Then F is not a mad family in [T]%. Hence there is some
X € [T} ad to F. By Lemma 2, there is X’ C X such that X’ € N'Dr.
Since X’ is also ad to F, it follows that F is not mad in NDp. O

Let o be the measure on Borel sets of the Cantor space “2 defined
as the product measure of the probability measure on 2. For X C T, let

w(X) = o([XT).
Definition 5 (Null sets). Let

Nr ={X e [T : p(X) =0}
Theorem 3. cov(N), a < a(N7).
Proof. Similarly to the proof of Theorem 2. 0O
Definition 6 (Nowhere dense null sets). Let

NDNT = /\/DT ﬂ/\fT.

Lemma 3. a(NDr) < a(NDNr) and a(Nr) < a(NDN7).
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a(NDNT)
0
Nr
a(Nr) o - a(N'Dy)
non(’/\/l) a / f/{ non(N)
cov(N) b cov(M)

Fig. 1.

Proof. For the first inequality, suppose that F is a mad family in NDNr.
Then F is an ad family in N'Dr. It is also mad in A'Dr. Suppose not. Then
there is an X € NDr ad to F. Let X’ € [X]® be as in the measure analog
of Lemma 2. Then X’ € N'DN . Hence F is not mad in N’'DAp. This is a
contradiction. The second inequality can be also proved similarly. O

The diagram Fig.1 summarizes the inequalities obtained in this section
integrated into the cardinal diagram given in Brendle [4]. “< — A” in the
diagram means that “k < X is provable in ZFC”. There are still some open
questions concerning the (in)completeness of this diagram. In particular:

Problem 1. (a) Are the inequalities between a(Nr), a(ND1), a(NDN'T)
consistently strict and complete?

(b) Are a(NDr) etc. independent from o, 0, a5 ?

3. Ad families F for which F= is contained in a certain
subfamily of [T]%o

In this section we give several constructions of ad families with the property
that the sets ad to them in a given generic extension are necessarily in a
certain subfamily of [T]*°. The constructions in this section are used in the
proof of some results in the next sections.

Theorem 4. (CH) There exists an ad family F C Ar of size Xy such that
for any cardinal k we have

(31) V& EF-CNDy.

Proof. Let

(32) S={(p,B,t) : p€C0, B is anice C,-name of a subset of T,
teT and plc, “ B is dense below t”.}

Note that this set is of cardinality 8y by CH. Let ((pa, Ba,ta) @ @ < wi\w)

be an enumeration of S.
By induction on a < w1y, we construct A, C T, a < w; such that
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(3.3) A, € Ar for all a < wy,

(3.4) A,, n € wis a partition of 7'\ {#} (note that @ is the root of the
tree T),

(3.5) |AgNAy| <N forall < a<wi,and

3.6) if o € wy \w, for each ¢ <¢_ p, and n € w, there are r <¢_ ¢ and
te€ A, |ty such that |¢] > n and r|F¢, “t € Bo” (in particular,

Pa ”—Cw “|Aa N Ea' - NO”)'

We show first that F = {A, : a <w;} for A,’s as above satisfies (3.1).
Since every subset of 7' in V¢* is contained in VX for some countable
X C k, it is enough to show (3.1) for kK = w. Assume for contradiction that,
for some C,-name B* of subset of T' and p € C,, we have p|¢, ¢ @* €

Ft \NDr”. Then there are t* € T and p* <¢_ p such that
(3.7) p*lFc, “ B* is dense below t* and | B*NA, | < Xp for all & < wy”.

We may assume that B* is a nice C,-name. Let o < w; \ w be such that
(pa Basta) = (", B*1*). Then p* |, | Aa N B*| = No” by (3.6). This
is a contradiction.

To see that the construction of A,, a < wi is possible, assume that
(Ag : 0 < a) satistying (3.3), (3.4), (3.5) and (3.6) has been constructed

for o € wy \ w.
For g <¢_ pqo let

I(Bayq) ={te€T : t<rta A3r<c,q (rle., “te JNBQ”)}.

Note that I( B, ¢q) is dense below t,, by the definition (3.2) of (o, Basta) €
S.
Fix an enumeration {(g;,n;) : @ <w} of (Cy | pa) X w and an enumer-
ation {8; : i <w} of a.
By induction on m € w we choose u,, € T and r,, € C, according to
the following (3.8) — (3.12) and let
Ag ={um : m < w}.
In the m’th step of the construction, let u,, € T and r,, € C, be such that
(3.8) {u; : ¢ < m} is an antichain in T | ¢, which is not maximal below
ta;
(3.9) um € I(Ba,qm) \ U{Ag, : i <m};
(310) Ium‘ Z N 5
(3.11) 7 <c, gm; and
(3.12) 7 e, “tm € Ba -

This can be carried out. Indeed, at the m’th step if {u; : ¢ < m} has been
chosen so that it is a non-maximal antichain below t,, then we can find
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uy, € T | to distinct from all u;, i < m such that {u; : i < m}U {u;,}
is still a non-maximal antichain below ¢,. We can also choose ], so that
|ul, | > ny,. Since {Ag, : @ < m} are antichains we can find u],, <p u,, such
that there is no t <p w,, with ¢ € U{Ag, : i < m}. Since I(Ba,qm) is dense
below t, we can find u,, € I( Ba, @m) such that u,, <r u!’. By the definition
of I(@a,qm) there is an r, <c_ ¢m such that rp, |Fc, “Um € ga”.

It is easy to see that A, defined as above satisfies (3.3),(3.5) and (3.6):
A, € Ap by (3.8). |[AgNAy| < Rg for all § < a by (3.9). To show that
A, also satisfies (3.6), suppose that ¢ <¢_ p, and n € w. Let m € w be
such that (¢, n) = (gm, nm). Then we have r,,, <c_ q by (3.11), u,, € A, by
definition of A, |um | > n by (3.10) and 7y, |Fe, “tm € Ba” by (3.12).
O

Problem 2. Is CH really necessary for the conclusion of Theorem 47

In connection with the problem above, we can actually obtain a slightly
stronger conclusion than that of Theorem 4 if our ground model is a generic
extension of some inner model by adding uncountably may Cohen reals.
Note that CH need not hold in such a model.

Theorem 5. Suppose that W = V1. Then, in W, there is an ad family
F C Ar of cardinality X1 such that,

(3.13) for any c.c.c. poset P with P € V, we have W¥ | F+ C ND7.
Proof. Let A € [T]® NV be an antichain and let (5, : n € w) be a 1-1
enumeration of A.

Let G be a (V,C,, )-generic filter and W = V[G]. For p € Cy,, a < w1
and k € w, let

P ={(n,i) Ew xw : (wa+3n,i) € p};

n, if [wa, wa+ 3n + 1] € dom(p),
plwa+3n+1) =1 and
Mok = [{m <n : plwa+3m+1)=1}| =k,
undefined, if there is no such n as above;
{(n,i) e wxw :n <l (wa+3n+2,i) € p},
T if n?, ; is defined,
undefined, otherwise
and
{(n,i) ewxwn<nl ), (wa+3n+2,1) € p},
= if n}, ;. is defined,

undefined, otherwise.

Let
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fg - UpEG fga
t& =12 for some p € G such that t2 is defined, and
tS =t for some p € G such that 7, is defined.

For a € wy, let
(3.14) Aq ={t§ ~t; 75, + kew).

Clearly each A, is an antichain in 7T'.

Ay, a < wp are pairwise almost disjoint: Suppose that a < 8 < w;.
Then there is ky < w such that tg’k #* fgk for all k € w\ ko. It follows that
Ao N A C{t§ T tr 15, k < ko).

We show that F = {A, : @ < w;} satisfies (3.13).

Suppose that P is a c.c.c. poset (in W) and P € V. Let H be a (W, P)-
generic filter. It is enough to show that, in W[H], if X € [T]™° is not nowhere
dense then X is not almost ad to F.

By the c.c.c. of C,, * P~ Cn, X P, there is an a* € w; such that
X € VIG | Cpor][H]. Let t € T be such that X is dense below ¢. Then

D = {p € Cy\wa~ : th Dt for some a € wy \ wa™}

is dense in Cy, \wa -
For p € D and o € wy \wa™ such that 5, O ¢, letting A4 a C,,\q--name

of A,, we have p ¢ “lAaNX | t] =Np” by (3.14) and since X is

wi\wa*
dense below ¢.

By genericity, it follows that, in W[G], there is o < wy such that | A, N
X|=R,. O

A measure version of Theorem 5 also holds:

Theorem 6. Let W = VC1. Then, in W, there is an ad family F in Np
of cardinality Ny such that for any c.c.c. poset P with P € V, we have
WP = FL C Or.

For the proof of Theorem 6 we note first the following:

Lemma 4. Suppose that X C T is such that X = {tx : k € w} for some
enumeration ty, k € w of X with £(ty) >k for all k € w. Then X € Nr.

Proof. For all n € w, we have [X] € Uye\n!T | t]. Hence
pX) =o([X1) < Xpeann 0T L tr]) < P 28 =27"
It follows that u(X)=0. O

Proof (of Theorem 6). Let G be a (V,C,, )-generic filter and W = V[G]. In
W, let

fozG:{<nvi> : (wa+n,i) € p for some p € G}
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for @ < wy and let g§ € “w be the increasing enumeration of (fg)_l [{1}].
Further in W, we construct inductively A, € N7, a < w; as follows.
For n € w, let A,, € N be such that (A, : n € w) is a partition of T' in
V. We can be easily find such A,,’s by Lemma 4.
For w < o < wy, suppose that pairwise almost disjoint Ag, § < a have
been constructed. Let (B, : ¢ € w) be an enumeration of {Ag : 3 < a}
and, for each n € w, let (b, : M € w) be an enumeration of

(3.15) C, =T\ ("2U{By : £ <n}).
Let
(3.16) Aq = {bngo(m) : n € w}.

A, € Ny by (3.15) and Lemma 4. A, is ad to {Ag : 3 < a} by (3.15) and
(3.16).

We show that F = {A, : a < w;} is as desired. Suppose that P is c.c.c.
(in W) and P € V. Let H be a (W, P)-generic filter. It is enough to show
that, in W[H], if X € [T]% \ Or then X is not ad to F. So suppose that
(in W[H]) X € [T]* \ Or and f € [X]. Let B = X N B(f). By the c.c.c. of
Co, * P~ C,, X P, there is an o* € wy \ w such that B € V[(G | Coa)|[H].
If BN A, is infinite for some o < o™ then we are done. So assume that B
is ad to all A,, a < a*. Then BN C, is infinite for all n € w. Since ch* is a
Cohen real generic over V[(G | Cya+)][H], it follows that BN A, is infinite.
O

4. Almost disjoint numbers over ad families

In this section we turn to questions on the possible values of a™(-).

Theorem 7. (K. Kunen) at(0) =c.

Proof. Let F be any mad family in Ap of cardinality 0. By maximality of
F we have F+ = Br. If G C [T]™ is disjoint from F and FUG is mad then
G is mad in Br and hence |G| = ¢ by Theorem 1. O

Theorem 8. VS = at(Ry) > k for all regular .

Proof. If k = wy this is trivial. So suppose that £ > w;. Let W = V¢ - Then
VC = WC\1. Let F be as in the proof of Theorem 5. Suppose that F O F

is mad on T in V. Then F C (NDT)VCR. Since V¢ |= cov(M) > &, it
follows that | | > k by Theorem 2. O

Corollary 1. The inequality a = ¥y < at(Ry) = ¢ is consistent.

Proof. Start from a model V' of CH. Since there is a C,-indestructible mad
family in V' it follows that V¢« |= a = Xy (see e.g. [8], Theorem 2.3). On
the other hand we have V¢ |=at(R;) = 8y = ¢ by Theorem 8. O

Theorem 9. The inequality a*(N1) < ¢ is consistent.
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For the proof of the theorem we use the following forcing notions: for a family
TC{Acw]® :|w\A|=Ro} closed under union, let Q7 = (Qz, <g,) be
the poset defined by

Q7 =C, X1
For all (s, A), (s',A’) € Qz

(4.1) (s, A") <@, (s,4) & sCs, ACA and
Vn € dom(s’) \ dom(s) (n€ A — s'(n) =0).

Clearly Q7 is o-centered.
For a (V,Qz)-generic G, let

fa=U{s : (s,A) € G for some A € T} and
AG — fal/’{1}~

Let Z be the ideal in [w]® generated from Z (i.e. the downward closure of
7 with respect to C). By the genericity of G and the definition of <g, it is
easy to see that Aq is infinite and

(4.2) for every B € ([w]*)V, Ag is almost disjoint from B < B € Z.

Proof (of Theorem 9). Working in a ground model V of 2% = 28t = 3, let
(P, (@5 s a<ws, < ws)

be the finite support iteration of c.c.c. posets defined as follows: for 8 < ws,

let @ 3 be the Pg-name of the finite support (side-by-side) product of

(43) Qz Fed

where

& ={F : Fis an ideal in [w]}°
generated from an ad family in [w]®° of cardinality R;}

in V5. We have
VEs = Qp satisfies the c.c.c.
since VP = Qf is o-centered for all F e . By induction on a < ws, we

can show that P, satisfies the c.c.c. and |P, | < 2%t = N3 for all a < wy. It
follows that

(4.4) VPer |= 2% = 281 — N3,
Thus the following claim finishes the proof:
Claim. VP“’Q ': a= C1+ (Nl) = NQ.

- Working in VF«2 suppose that F is an ad family in [w]™° of cardinality
N;. By the c.c.c. of P, there is some a* < wy such that F € VFar | By
(4.3) and (4.2), there are A,, @ € wy \ a* such that
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(4.5) for every B € (w]*)V"™, A, is ad from B & B € the ideal
generated from FU{Ag : B € a\a*}.

Since ([w]*)V™* =, (W)Y, it follows that FU{A, : a € ws\a*}
is a mad family in VF«2. This shows that VFe: = at(R;) < N,.

We also have VFPe2 |= a > Ry: for any ad family G C ([u)]NO)VHuz of
cardinality < Ny, there is some a* < wy such that G € VPor But Qg adds
an infinite subset of w almost disjoint to every element of G. Hence G is not
mad. 4 O
Clearly, the method of the proof of Theorem 9 cannot produce a model of
U.+(N1) = Nl <.

Problem 3. Is a™(X;) = N; < ¢ consistent?

All infinite cardinals less than or equal to the continuum ¢ can be rep-
resented as a® (F) for some F.

Theorem 10. For any infinite k < ¢, there is an ad family F C [T|¥ of
cardinality ¢ such that at(F) = k.

Proof. Let F’' be a mad family in A7. Then by Lemma 1, we have

(4.6) F'*+=DBr.

Let X and X’ be disjoint with “2=X U X', | X |=cand | X'| = k. Let
F=F U{B(f): fe X}

Clearly F is an ad family. By (4.6) we have F*+ C Br.

We claim a®(F) = : Since F U {B(f) : f € X'} is a mad family by
Lemma 1, we have a(F) < k. Again by Lemma 1, if G C F* is an ad
family of cardinality < &, then there is f € X’ such that B(f) is ad from
every B€ G. Thus a™(F) > k. O

5. Destructibility of mad families

For a poset P, a mad family F in [T]™ is said to be P-destructible if
VE = F is not mad in [T]M0.
Otherwise it is P-indestructible.

The results in Section 3 can be also formulated in terms of destructibility
of mad families.

Theorem 11. (1) (CH) There is an ad family F C Ap which cannot be
extended to a C,-indestructible mad family in any generic extension of the
ground model of the form V.

(2) Let W = VC1. Then, in W, there is an ad family F C N'Dr of cardi-
nality Ny such that, in any generic extension of W by a c.c.c. poset P with
P eV, F cannot be extended to a C,-indestructible mad family.

(3) LetW = VC1. Then, in W, there is an ad family F C N of cardinality
Ny such that, in any generic extension of W by a c.c.c. poset P with P € V,
F cannot be extended to a R, -indestructible mad family.
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Proof. (1): The family F as in Theorem 4 will do. Since we have F' C
NDy for any mad F' extending F in VS a further Cohen real over V¢x
introduces a branch almost avoiding all elements of F’. Thus F’ is no longer
mad in VCr*Co,

(2): By Theorem 5 and by an argument similar to the proof of (1).

(3): In W, let F be as in the proof of Theorem 6. Then any mad F' O F
on T in any WF for P as above is included in N7 by Or C N7p. Hence,
in WF*R«  the random real f over WF introduces the branch B(f) almost
avoiding all elements of /. Thus F” is no longer mad in W™« O

6. k-almost decided and A-minimal mad families

In this final section we collect several other constructions of mad families
with some additional properties.

Given an ad family F on T let Z(F) be the ideal on T' generated by
FU[T)¥, ie. for S C T we have S € Z(F) if S c* UF’ for some finite
subfamily F’ of F.

Let F be mad family on T and B C F. Clearly B+ 2 Z(F \ B). We say
that B almost decides F if BX = Z(F \ B). A mad family F is said to be
k-almost decided if every B € [F|" almost decides F.

Theorem 12. Assume that MA(o-centered) holds. Then there is a c-almost
decided mad family F on T.

Proof. Let (Bs : 8 < ¢) be an enumeration of [T]*°. We define 4,, o < ¢
inductively such that

(6.1) {A, : n € w} is a partition of T into infinite subsets;

For all « € ¢\ w

(6.2) A, is ad from Ag for all 8 < o

(6.3) For B < a,if Bsg¢ Z({As : § < a}) then | Ay N Bg| = Ro;

Claim. The construction of A,, a < ¢ as above is possible.

F Suppose that o € ¢\w and Ag, 3 < a have been constructed according
to (6.1), (6.2) and (6.3). Let
Sa={f<a:Bz¢I({As:d<a})}.
Let P, = {{p,s) : v € Fn(T,2), s € [a]<¥} be the poset with the ordering
defined by
(¢',8') <p. (¥,5) &
pC ¢, sCs and
Vit € dom(¢’) \ dom(p) (p'(t) =1 — t & As for all § € s)
for (¢, s), (¢, ') € Pa.
P, is o-centered since (¢, s), (¢, s’) € P, are compatible if o = ¢'.
For 3 < a, let
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Cs={(p,s) €Po : BE s}
and, for 8 € S, and n € w, let
Dg ., ={{p,s) €Py : 3t € dom(p) (U(t) >nAp(t)=1At e Bg)}.

It is easy to see that Cg, < a and Dg,, 8 € Sq, n € w are dense in P,.
Let

D={Cs: 8<a}U{Dgy, : B €Sy, neuw}

Since |D| < ¢, we can apply MA (o-centered) to obtain a (D, P, )-generic
filter G. Let

Ao ={t €T : p(t) =1 for some (yp, s) € G}.
Then this A, is as desired. —

Let F = {A, : a < c}. F is infinite by (6.2) and mad by (6.3).
We show that F is c-almost decided. First, note that we have a = ¢ by
the assumptions of the theorem. By (6.3), we have:

(6.4) TFor any B € [T)™,if B ¢ T({As : o < c}) then
[{a<c:|AaNB| <N} | <.

Suppose that H € [F]* and B € H*. Then [{a <c¢: |A,NB|<Ro}|=c¢
and so B € Z(F) by (6.4). Thus there is a finite 7/ C F such that B C* UF’
and F'N B is infinite for each F € F'. But B € H* so ' N'H = (). Thus F’
witnesses that B € Z(F \ ‘H) which was to be proved. O

For a mad family F on T', C C F is said to be minimal in F if a™ (F\C) =
|C|. A mad family F is said to be A\-minimal if every C € [F]* is minimal
in F.

Lemma 5. Suppose that F is a mad family on T.

(1) If F is | F|-minimal then | F| = a.

(2) If BC F almost decides F and F\ B is infinite then F \ B is minimal
mn F.

(3) If F is k-almost decided for k = |F| then F is A-minimal for all
w<A<K.

(4) If | F| =a and F is a-almost decided then F is a-minimal.

Proof. (1): If F is | F |-minimal then F itself is minimal in F. Thus a =
at (@) =a*(F\F)=|F|

(2): First, note that, for any infinite ad F, we have a(Z(F)) = | F|.
Suppose that F is a mad family on T and B C F almost decides F, i.e.
Bt =Z(F \ B). Hence

ot (F\(F\B)) =a®(B) =a(B) =a(Z(F\B)) = |F\B|.
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(3): Suppose that x = | F| and F is k-almost decided. If C € [F]* for
some w < A < k then | F\ C| =« and hence F \ C almost decides F. By
(2) it follows that C = F \ (¥ \ C) is minimal in F.

(4): Suppose that | F| = a and F is a-almost decided. Suppose that
C e [F]*. If |[F\C| < a, then clearly at(F\ C) = a = |C|. Hence C is
minimal in F. If | F\ C| = a then F \ C almost decides F. Thus, by (2),
C =F\ (F\C) is again minimal in F. O

Corollary 2. Assume that MA(o-centered) holds. Then there is a mad fam-
ily F on T which is A-minimal for all w < X <c.

Proof. By Theorem 12 and Lemma 5, (3), (4). O

Theorem 12 can be further improved to the following theorem:

Theorem 13. Assume that MA(o-centered) holds. Let k = ¢. Then there
is a C,-indestructible mad family F (of size k) such that

(6.5) VC |= F is k-almost decided on T.

Proof. Let ((ts, Bg) : B < k) be an enumeration of
T x {B : B is a nice C,-name of an element of [T]"° in V¢ }.

Let Ay, a < K be then defined inductively just as in the proof of Theorem
12 with

(6.3) For 8 < o, ift|e, “Ba ¢ T({As : 6 < a})” then t|c, | Ao N
Byl =%’

in place of (6.3). O

Corollary 3. For any cardinal K > ¢ in the ground model V there is a
cardinal preserving generic extension W of V' such that, in W, k < ¢ and
there is a k-almost decided mad family F of size k (furthermore F is -
minimal for all w < XA < k).

Proof. First extend V to a model V' of k = ¢ and MA(o-centered). In V’,
let F be as in Theorem 13. Then F is as desired in V¢ for any u > . The
claim in the parentheses follows from Lemma 5, (3) and (6.3)’. O
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