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1. Introduction

In their seminal paper [3], Fock and Goncharov defined positive representations of
the fundamental group of a surface S into a split semi-simple real Lie group G (e.g.
PSL(n, R)). They showed that the space of positive representations satisfies properties
similar to those of the Teichmüller space: a positive representation is faithful, has dis-
crete image in G, and the moduli space of positive representations is diffeomorphic to
R−χ(S) dim G. In fact, when G = PSL(2, R), the space of positive representations coincides
with the Teichmüller space. They showed that the space of positive representations co-
incides with the Hitchin component [9] in the representation space of π1(S) into G. It
should be mentioned here that Labourie introduced in [11] the notion of Anosov repre-
sentations, whose moduli space coincides with the Hitchin component and the space of
positive representations [11], [8].

When the Lie group is PSL(n, R) and an ideal triangulation of S is fixed, Fock and
Goncharov defined two types of invariants for positive representations: ‘vertex functions’
and ‘edge functions’. A vertex function is also called a triple ratio, which we will use
in this note. They showed that these invariants give a set of coordinates of positive
representations. (Their coordinates are also defined for more general representations
into PSL(n, C).) The Fock-Goncharov coordinates are extensively studied: there are
generalizations to 3-manifolds groups [1], [6], [5]; the McShane identities are studied in
[12]; Fenchel-Nielsen type coordinates for the Hitchin component in [2]. In [10], I and Xin
Nie give a parametrization of PGL(n, C)-representations of a surface group as an analogue
of the Fenchel-Nielsen coordinates.

In this note, I will explain Fock-Goncharov coordinates and give an explicit construc-
tion of matrix generators for once-punctured torus group, in terms of Fock-Goncharov
coordinates.

2. Flags

Let GL(n, C) be the general linear group of n × n complex matrices. We define two
subgroups B and U by

B =


∗ · · · ∗. . .

...
O ∗

 , U =


1 ∗

. . .
O 1

 .

The center of GL(n, C) is isomorphic to C∗, the set of diagonal matrices with the same
diagonal entries. We let PGL(n, C) = GL(n, C)/C∗. We have a short exact sequence
1→ Z/nZ→ SL(n, C)→ PGL(n, C)→ 1.
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A (complete) flag in Cn is a sequence of subspaces

{0} = V 0 ( V 1 ( V 2 ( · · · ( V n = Cn.

We denote the set of all flags by Fn. GL(n, C) and PGL(n, C) act naturally on Fn from
the left.

We represent X ∈ GL(n, C) by n column vectors as

X =
(
x1 x2 · · · xn

)
where xi = t(xi

1, . . . , x
i
n) are column vectors. By setting X i = spanC{x1, . . . , xi}, we

obtain a flag {0} ⊂ X1 ( · · · ( Xn from an element of GL(n, C). Thus we have a map
from GL(n, C) to Fn. Since an upper triangular matrix acts from the right as

(1) X

b11 · · · b1n

. . .
...

O bnn

 =
(
b11x

1 b12x
1 + b22x

2 . . . b1nx
1 + · · ·+ bnnx

n
)
,

the map induces a map GL(n, C)/B → Fn. We can easily show that this is bijective and
equivariant with respect to the left action of GL(n, C). Thus we can identify Fn with
GL(n, C)/B. We can also identify Fn with PGL(n, C)/B where we also denote by B for
the quotient in PGL(n, C) by abuse of notation. We let AFn = GL(n, C)/U and call an
element of AFn an affine flag. We have the following short exact sequence:

1 → B/U → AFn → Fn → 1.
‖ ‖

GL(n, C)/U GL(n, C)/B

Example 2.1. When n = 2, Fn can be identified with the set of lines in C2. In other
words, F2 is the projective line CP 1. If we regard CP 1 as C ∪ {∞}, PGL(2, C) acts on
CP 1 by linear fractional transformations and the stabilizer at ∞ is the subgroup B of
upper triangular matrices. Thus we have F2 = CP 1 ∼= PGL(2, C)/B.

3. Triples of flags

We will describe the moduli space of configurations of ‘generic’ n-tuples of flags.

Definition 3.1. Let (X1, . . . , Xk) be a k-tuple of flags. We fix a matrix representative
Xi = (x1

i · · · xn
i ) ∈ GL(n, C) for each i. A k-tuple of flags (X1, . . . , Xk) is called generic if

(2) det(x1
1 · · · x

i1
1 x1

2 · · · x
i2
2 · · · x1

k · · · x
ik
k ) 6= 0

for any 0 ≤ i1, . . . , ik ≤ n satisfying i1 + i2 + · · ·+ ik = n.

We remark that the genericity does not depend on the choice of the matrix representa-
tives. Moreover the determinant in (2) is a well-defined complex number if X1, . . . , Xk ∈
AFn (recall (1)). We denote the determinant by det(X i1

1 X i2
2 . . . X ik

k ) for a k-tuple of affine
flags. In this note, we only consider generic triples or quadruples of flags.

Let (X, Y, Z) be a generic triple of Fn. We fix lifts of X,Y, Z toAFn. For a triple (i, j, k)
of integers satisfying 0 ≤ i, j, k ≤ n and i + j + k = n, we denote ∆i,j,k = det(X iY jZk).
Consider a big triangle subdivided into n2 small triangles as in Figure 1. Such a triple
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(0, 0, 4)(0, 4, 0)

(4, 0, 0)

(3, 0, 1)

(1, 0, 3)

(2, 0, 2)

Figure 1. A subdivision into n2 triangles (n = 4).

(i, j, k) corresponds to a vertex of the subdivided triangle. For an interior vertex (i, j, k)
(in other words 1 ≤ i, j, k ≤ n− 1 and i + j + k = n), the triple ratio is defined by

Ti,j,k(X, Y, Z) =
∆i+1,j,k−1∆i−1,j+1,k∆i,j−1,k+1

∆i+1,j−1,k∆i,j+1,k−1∆i−1,j,k+1
.

We show a graphical representation of Ti,j,k(X,Y, Z) in Figure 2. Each factor of the
numerator (resp. denominator) corresponds to a vertex colored by black (resp. white)
in Figure 2. We remark that Ti,j,k(X, Y, Z) does not depend on the choice of the matrix
representatives. By definition, we have

Ti,j,k(X, Y, Z) = Tj,k,i(Y, Z, X) = Tk,i,j(Z, X, Y ),(3)

Ti,j,k(X, Y, Z) =
1

Ti,k,j(X,Z, Y )
,(4)

Ti,j,k(X, Y, Z) = Ti,j,k(AX, AY, AZ),(5)

for any generic triple X,Y, Z ∈ Fn and A ∈ PGL(n, C).

(i, j + 1, k − 1)

(i + 1, j, k − 1)

(i, j − 1, k + 1)

X

Y Z

(i, j, k)

(i − 1, j, k + 1)

(i + 1, j − 1, k)

(i − 1, j + 1, k)

Figure 2. The black (resp. white) vertices correspond to the factors of
the numerator (resp. denominator) of the triple ratio.

If we denote

Confk(Fn) = GL(n, C)\{(X1, . . . , Xk) | generic k-tuple of Fn},

Ti,j,k are functions on Conf3(Fn) by (5). Moreover, we have the following theorem.

Theorem 3.2 (Fock-Goncharov). A point of Conf3(Fn) is completely determined by the
(n−1)(n−2)

2
triple ratios. In particular, Conf3(Fn) ∼= (C∗)(n−1)(n−2)/2.

This theorem follows from the existence of the following normal form of a generic triple
of flags.
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Lemma 3.3. Let (X, Y, Z) be a generic triple of Fn. Then there exists a unique A ∈
GL(n, C) and upper triangular matrices B1, B2, B3 up to scalar multiplication such that

AXB1 =

1 O
. . .

O 1

 , AY B2 =

O 1

. .
.

1 O

 , AZB3 =


1 0 · · · 0
1 1 O
...

. . .
1 ∗ 1

 .

This means that the lower triangular part of AZB3 gives a set of complete invariants
for configurations of generic triples of flags. We will later give a brief sketch of the proof
of Lemma 3.3, which gives an explicit construction of the matrix A. Combining with the
following lemma, we complete the proof of Theorem 3.2.

Lemma 3.4. Each entry of the lower triangular part of AZB3 in Lemma 3.3 is written
by a Laurent polynomial of the triple ratios Ti,j,k(X, Y, Z).

This can be proved by induction. Probably the Laurent polynomial might be a poly-
nomial. Here are some examples for small n.

Example 3.5. When n = 3, let T = T1,1,1(X, Y, Z), then we have the following normal
form:

(6) X =

1 0 0
0 1 0
0 0 1

 , Y =

0 0 1
0 1 0
1 0 0

 , Z =

1 0 0
1 1 0
1 T + 1 1

 .

In fact, we have

T1,1,1(X,Y, Z) =

det

 1 0 0
0 1 0
0 0 1

 det

 0 0 1
0 1 1
1 0 1

 det

 1 1 0
0 1 1
0 1 T + 1


det

 1 0 1
0 1 1
0 0 1

 det

 1 0 0
0 0 1
0 1 0

 det

 0 1 0
0 1 1
1 1 T + 1

 = T.

When n = 4, let Tijk = Ti,j,k(X,Y, Z), then we have the following normal form:

X = I4, Y = C4, Z =


1 0 0 0
1 1 0 0
1 T121 + 1 1 0
1 (T211 + 1)T121 + 1 (T112 + 1)T211 + 1 1

 ,

where I4 is the identity matrix and C4 is the counter diagonal matrix with all counter
diagonal entries 1.

Sketch of proof of Lemma 3.3. First we show that for a generic triple of flags (X,Y, Z),
there exists a unique matrix A ∈ GL(n, C) such that

AX =

∗ · · · ∗. . .
...

O ∗

 , AY =

O ∗

. .
. ...

∗ · · · ∗

 , AZ =

1
... ∗
1

 .
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We need to find a matrix A = (aij) satisfying

ai1x
j
1 + ai2x

j
2 + · · ·+ ainx

j
n = 0, (j < i)

ai1y
j
1 + ai2y

j
2 + · · ·+ ainy

j
n = 0, (j < n− i + 1)

ai1z
1
1 + ai2z

1
2 + · · ·+ ainz

1
n = 1.

This system of linear equations is equivalent to the matrix equation

(7)



x1
1 . . . x1

n
...

...
xi−1

1 . . . xi−1
n

y1
1 . . . y1

n
...

...
yn−i

1 . . . yn−i
n

z1
1 . . . z1

n


ai1

...
ain

 =


0
...
0
1

 , i = 1, . . . , n.

Since (X, Y, Z) is generic, we can show that the n × n-matrix in the above equation is
invertible. So we have a unique solution A ∈ M(n, C). We can show that det A 6= 0 by
genericity.

Multiplying an upper triangular matrix from the right, we can eliminate the upper right
(or lower right) triangular part of a matrix. This completes the proof of Lemma 3.3. �

From the proof of Lemma 3.3, we have the following proposition.

Proposition 3.6. (1) Let X,Y ∈ Fn and z ∈ CP n−1 be a generic triple, and X ′, Y ′ ∈
Fn and z′ ∈ CP n−1 another generic triple. Then there exists a unique matrix
A ∈ PGL(n, C) such that

AX = X ′, AY = Y ′, Az = z′.

(2) Let X, Y ∈ Fn and z ∈ CP n−1 be a generic triple and Ti,j,k be nonzero complex
numbers for i, j, k satisfying 1 ≤ i, j, k ≤ n − 1 and i + j + k = n. Then there
exists a unique flag Z such that Z1 = z and Ti,j,k(X,Y, Z) = Ti,j,k.

4. Quadruples of flags

Let X,Z be affine flags and y, t be non-zero n-dimensional vectors. We say that (X, Z, y)
is generic if det(XkZn−k−1y) 6= 0 for k = 0, . . . , n−1. If (X,Z, y) and (X, Z, t) are generic,
we define the edge function for i = 1, . . . , n− 1 by

(8) δi(X, y, Z, t) =
det(X i−1yZn−i) det(X iZn−i−1t)

det(X iyZn−i−1) det(X i−1Zn−it)
.

We show a graphical representation of δi(X, y, Z, t) in Figure 3. We can easily check that
δi(X, y, Z, t) is well-defined for X, Z ∈ Fn and y, t ∈ CP n−1. By definition, we have

δi(X, y, Z, t) =
1

δi(X, t, Z, y)
,(9)

δi(X, y, Z, t) = δn−i(Z, t, X, y),(10)

δi(X, y, Z, t) = δi(AX, Ay, AZ,At),(11)

for any A ∈ PGL(n, C). For a generic quadruple X, Y, Z, T ∈ Fn, we simply denote

δi(X, Y, Z, T ) = δi(X, Y 1, Z, T 1).
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By (11), δi(X,Y, Z, T ) are functions on Conf4(Fn). For a generic quadruple (X,Y, Z, T ),

we have (n−1)(n−2)
2

triple ratios for each (X, Y, Z) and (X,Z, T ) and (n−1) edge functions.
These (n − 1)(n − 2) + (n − 1) = (n − 1)2 invariants completely determine a point of
Conf4(Fn). First we show the following proposition.

(i − 1, 1, n − i)

X

(i − 1, n − i, 1)

(i, n − i − 1, 1)

Z

(i, n − i, 0)
y t

(i, 1, n − i − 1)

Figure 3. The black (resp. white) vertices correspond to the factors of
the numerator (resp. denominator) of the edge function.

Proposition 4.1. Let X,Z ∈ Fn and y ∈ CP n−1 such that the triple (X,Z, y) is generic.
For any d1, . . . , dn−1 ∈ C∗, there exists a unique t ∈ CP n−1 such that

δi(X, y, Z, t) = di, i = 1, . . . , n− 1.

In fact, by (11) and Proposition 3.6 (1), we can assume that the triple (X, Z, y) is of
the form

(12) X =

1 O
. . .

O 1

 , Z =

O 1

. .
.

1 O

 , y =

1
...
1

 .

We denote the identity matrix of size i by Ii and the counter diagonal matrix of size i
with counter diagonal entries 1 by Ci. We let t = [t1 : · · · : tn] ∈ CP n−1, then we have

δi(X, y, Z, t) =

∣∣∣∣∣∣∣
Ii−1

... O
O 1 O

O
... Cn−i

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣

Ii O
...

O O ti+1

O Cn−i−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Ii

... O
O 1 O

O
... Cn−i−1

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣

Ii−1 O
...

O O ti

O Cn−i
...

∣∣∣∣∣∣∣
= −ti+1

ti
.

Thus t is uniquely determined by d1, . . . , dn−1.

Corollary 4.2. A point (X, Y, Z, T ) of Conf4(Fn) is uniquely determined by Ti,j,k(X,Y, Z),
Ti,j,k(X,Z, T ) and δi(X,Y, Z, T ).

In fact, (X,Y, Z) is uniquely determined by Ti,j,k(X,Y, Z) by Theorem 3.2. Then
T 1 ∈ CP n−1 is determined by δi(X, Y, Z, T ) by Proposition 4.1, and then T ∈ Fn is
determined by Ti,j,k(X, Z, T ) by Proposition 3.6 (2). We remark that the quadruple
(X,Y, Z, T ) determined by arbitrary given Ti,j,k(X, Y, Z), Ti,j,k(X,Z, T ) and δi(X,Y, Z, T )
might not be generic but the triples (X, Y, Z) and (X, Z, T ) are generic. (If we further
assume ‘positivity’ of triple ratios and edge functions, then the quadruple must be generic.)
By a similar argument, we can show that a configuration of generic k flags is uniquely
determined by some triple ratios and edge functions.
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Example 4.3. When n = 2, we observed in Example 2.1 that F2 is nothing but CP 1. So
we assume that X,Z ∈ CP 1. In this identification, the normalization (12) corresponds to

X = [1 : 0] =∞, Z = [0 : 1] = 0, y = [1 : 1] = 1.

Then we have δ1(∞, 1, 0, t) = −t. (See Figure 4.) Thus if we define the cross ratio by

[x0 : x1 : x2 : x3] =
x3 − x0

x3 − x1

x2 − x1

x2 − x0

,

we have δ1(X, y, Z, t) = −[X : Z : y : t].

t = −δ1(X, y, Z, t)
y = 1

X = ∞

Z = 0

Figure 4

5. Fock-Goncharov coordinates

We will use triple ratios and edge functions to give a parametrization of PGL(n, C)-
representations of a surface group.

Let S be an orientable surface with at least one puncture. We assume that S admits
a hyperbolic metric. An ideal triangle is a triangle with the vertices removed. An ideal
triangulation of S is a system of disjointly embedded arcs on S which decomposes S into
ideal triangles ∆1, . . . , ∆N , see Figure 5. (If S is a surface of genus g with p punctures,

then N = 4g− 4 + 2p.) We denote the universal cover of S by S̃, which can be identified
with the hyperbolic plane H2. The ideal triangulation of S lifts to an ideal triangulation

of S̃. Each ideal vertex of an ideal triangle of S̃ defines a point on the ideal boundary

∂H2. Let ∂S̃ ⊂ ∂H2 be the set of these ideal points. The fundamental group π1(S) acts

on the universal cover S̃ by deck transformations. It also acts on the ideal triangulation

of S̃ and the ideal boundary ∂S̃.

γ1

γ2

Figure 5

Let ρ : π1(S) → PGL(n, C) be a representation. A map f : ∂S̃ → Fn is called a

developing map for ρ if it is ρ-equivariant i.e. it satisfies f(γx) = ρ(γ)f(x) for x ∈ ∂S̃ and
γ ∈ π1(S). The representation ρ is recovered from the developing map as follows. Fix an
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ideal triangle of S̃, and denote its ideal vertices by v1, v2, v3. Since f is ρ-equivariant, we
have f(γvi) = ρ(γ)f(vi) for any γ ∈ π1(S) and i = 1, 2, 3. By Proposition 3.6 (1), ρ(γ) is
uniquely determined by these data as an element of PGL(n, C).

Let ∆ be an ideal triangle of the ideal triangulation of S. We take a lift of ∆ to S̃. Then
the ideal vertices of the triangle are mapped to a triple of flags by f . If the triple is generic,
we can define the triple ratios for ∆. Since f is ρ-equivariant and by (5), the triple ratios
do not depend on the choice of the lift. We can similarly define the edge functions for each
edge of the ideal triangulation. Thus, if S is a surface of genus g with p punctures, we

have (4g−4+2p) (n−1)(n−2)
2

triple ratio parameters and (6g−6+3p)(n−1) edge functions.
Altogether we have (n2−1)(2g−2+p) parameters. These parameters completely determine
f and hence ρ up to conjugacy. In fact, we can reconstruct f from these parameters. First

we choose one ideal triangle in S̃ and denote the ideal vertices by v1, v2, v3. Then take
arbitrary X1, X2 ∈ Fn and x3 ∈ CP n−1. Define f(vi) = Xi for i = 1, 2. By Proposition
3.6 (2), there exists unique f(v3) ∈ Fn such that f(v3)

1 = x3 and the triple ratios
Ti,j,k(f(v1), f(v2), f(v3)) are the same as the prescribed ones. Let (v1, v2, v4) be the ideal

triangle of S̃ adjacent to (v1, v2, v3). By Proposition 4.1, f(v4)
1 ∈ CP n−1 is uniquely

determined by the edge functions δi(f(v1), f(v3)
1, f(v2), f(v4)

1). Again by Proposition
3.6 (2), f(v4) ∈ Fn is determined by the triple ratios Ti,j,k(f(v1), f(v2), f(v4)). Iterating

these steps, f : S̃ → Fn is uniquely determined by these data. If we change the first
choice of X1, X2 ∈ Fn and x3 ∈ CP n−1, then the result differs by a conjugation. The
conjugating element is explicitly given by Proposition 3.6 (1). This system of triple ratio
and edge function parameters are called Fock-Goncharov coordinates.

6. Once-punctured torus case

Let S be a once punctured torus. Fix an ideal triangulation of S as in Figure 5. We
take a system of generators γ1, γ2 of π1(S) as in the right of Figure 5. We give the explicit
representation ρ : π1(S) → PGL(n, C) when n = 3 parametrized by Fock-Goncharov
coordinates.

e

w

c d

f

z

a

b

X1

X2

X3

X4

X5

X6

a

b

c d

Figure 6

Figure 6 shows a part of the universal cover S̃. We let z, w be the triple ratios for the
two ideal triangles and a, b, c, d, e, f be the edge functions for the three edges as indicated
in Figure 6. Each Xi in Figure 6 indicates the flag corresponding to the ideal vertex.
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First we fix

X1 =

1 0 0
0 1 0
0 0 1

 , X2 =

0 0 1
0 1 0
1 0 0

 , X1
4 =

1
1
1

 .

By (4), we have z = T1,1,1(X1, X4, X2) = (T1,1,1(X1, X2, X4))
−1. From the normal form

(6), we have

X4 =

1 0 0
1 1 0
1 1 + 1/z 1

 .

Next we compute X1
5 . Put X1

5 = [s1 : s2 : s3]. By the definition (8), we have

a = δ2(X1, X
1
5 , X4, X

1
2 ) =

∣∣∣∣∣∣
1 s1 1
0 s2 1
0 s3 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
1 0 s1

0 1 s2

0 0 s3

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

1 1 0
0 1 0
0 1 1

∣∣∣∣∣∣
=

s2 − s3

s3

,

b = δ1(X1, X
1
5 , X4, X

1
2 ) =

s1/z − s2(1 + 1/z) + s3

s2 − s3

.

Solving these equations, we have X1
5 = [s1 : s2 : s3] = [abz + az + a + 1 : a + 1 : 1].

Similarly we have

X1
3 = [1 : −e : ef ], X1

6 = [cdz : cdz + cz : cdz + cz + c + 1].

Next we determine X3 in Fn. We have

X1 = I3, X2 = C3, X3 =

 1 ∗ ∗
−e ∗ ∗
ef ∗ ∗

 ,

where I3 and C3 are defined as in Example 3.5. Since this triple is obtained from the
normal form of (X1, X2, X3) by multiplication by a diagonal matrix with diagonal entries
(1,−e, ef), we have

X3 =

 1 0 0
−e −e 0
ef ef(1 + w) ef

 .

The matrix ρ(γ1) maps the triple (X1
1 , X2, X3) to (X1

5 , X4, X1). Decompose ρ(γ1) into
two matrices as

(X2, X3, X
1
1 )

A−→ (I3, C3,

1
1
1

)
B←− (X4, X1, X

1
5 ),

each of which is calculated explicitly by (7). After some computation, we have

ρ(γ1) =

(1 + a(z + 1) + abz)efw f(w + 1) + afw(z + 1) 1
(1 + a)efw f(w + 1) + afw 1

efw f(w + 1) 1

 .
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Similarly, since ρ(γ2) maps (X1, X
1
2 , X3) to (X4, X

1
6 , X2), we obtain

ρ(γ2) =

cdefwz cdf(w + 1)z cdz
cdefwz cfz + cdf(w + 1)z cz + cdz
cdefwz cf(z + 1) + cdf(w + 1)z 1 + c(z + 1) + cdz

 .

We end this note by drawing some pictures of the images of developing maps. If
we restrict the coordinates to real numbers, we obtain a PGL(3, R)-representation. A
PGL(3, R) representation preserving a convex set in RP 2 is called a convex projective
representation. In [4], Fock and Goncharov showed that, when all triple ratios and edge
functions are positive, the associated PGL(3, R)-representation is convex projective. We
remark that Goldman gave a parametrization of convex projective structures in [7]. Fig-
ures 7, 8 and 9 are drawn in local coordinates of RP 2 given by

[x : y : z] 7→
(

z − y

x + z
,
x− y

x + z

)
.

In particular, X1
1 = [1 : 0 : 0] maps to (0, 1), X1

2 = [0 : 0 : 1] to (0, 0) and X1
4 = [1 : 1 : 1]

to (0, 0). I only drew triangles developed by the products of ρ(γ1) and ρ(γ2) whose word
lengths within 4 by using Sage [13]. I remark that these pictures might miss large triangles
in the developed images.
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Figure 7. a = b = c = d = 1.2, z = w = 1. (These correspond to Fuchsian
representations, so the developed images are in a round disk.)
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Figure 8. a = b = c = d = e = f = 1.2.
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Figure 9. a = b = c = d = 1.2, z = w = 1.
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