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Basic definitions
We assume that S is a once-punctured torus.(We will generalize results in the last.)
• α, β ∈ π1(S) : generators s.t. the commutator [α, β] to be peripheral.

β
α

We often denote the simple closed curve freely homotopic
to α (resp. β) by the same symbol.

• X(S) = {ρ : π1(S)→ PSL2C | tr(ρ([α, β])) = −2}/ ∼
where ρ ∼ ρ′ if they are conjugate. (PSL2C-character variety)

• AH(S) = {[ρ] ∈ X(S) | discrete, faithful}

• QF (S) = {[ρ] ∈ AH(S) | ρ(π1(S)) is quasi-Fuchsian}

• The complex length λγ(ρ), for γ ∈ π1(S) and [ρ] ∈ X(S), is a complex number char-
acterized by tr(ρ(γ)) = 2 cosh(λγ(ρ)/2), Re(λγ(ρ)) > 0 and −π < Im(λγ(ρ)) ≤ π.
The real (resp. imaginary) part of λγ(ρ) is the translation length (resp. rotation angle)
of ρ(γ).

• For a real number l > 0, we define the linear slice by

X(l) = {[ρ] | λα(ρ) ≡ l}.
• QF (l) = X(l) ∩QF (S).
For a summary, see Diagram 1.

Known facts and experimental pictures
• X(S) is complex 2-dimensional, X(l) is complex 1-dimensional.

• AH(S) is closed, and QF (S) is open in X(S).

• QF (S) = AH(S) (Minsky [Mi], density theorem for once punctured torus.)

• QF (l) is a union of (open) disks (McMullen [Mc], disk convexity of QF )

• QF (l) contains at least one component containing all Fuchsian representation ρ satis-
fying λα(ρ) = l. We call this component the standard component. (This component
is called BM-slice and extensively studied in [KS].)

• If l > 0 is sufficiently small, QF (l) has only one component (Otal).
We will see that X(l) can be identified with {τ ∈ C | −π < Im(τ ) ≤ π}. In the

following pictures, QF (l) is indicated by shaded regions, and the red lines correspond to
Fuchsian representations.
Fig. 1. Pictures of QF (l)✓ ✏

l = 0.5 l = 3.0 l = 5.0 l = 20.0✒ ✑
These pictures suggest that QF (l) has more components as l getting longer. In fact:
Theorem A (Komori-Yamashita)✓ ✏

If l is sufficiently large, QF (l) has more than one component.✒ ✑
We give another proof of this theorem by using complex projective structures, with a

few new observations and a possible generalization.

Complex Fenchel-Nielsen coordinates
We give an explicit description of X(l) as a subset of C.
• XSL(S) : the SL2C-character variety is defined similarly as PSL2C case.

• We have the following isomorphism:

XSL(S)
∼=−−−−→ {(x, y, z) | x2 + y2 + z2 − xyz = 0}

∈ ∈

[ρ] )−→ (tr(ρ(α)), tr(ρ(β)), tr(ρ(αβ)))

X(S) is the quotient of XSL(S) by the action of (Z/2Z)2. (Explicitly, it is generated
by (x, y, z) )→ (−x, y,−z) and (x, y, z) )→ (x,−y,−z).)
• Fix l > 0. There exists a bijection {τ | −π < Im(τ ) ≤ π}→ X(l) defined by

τ )→
(
2 cosh

(
l

2

)
,
2 cosh(τ/2)

tanh(l/2)
,
2 cosh((τ + l)/2)

tanh(l/2)

)
.

• The Dehn twist along α acts on X(l) as (l, τ ) )→ (l, τ + l).

Let τ = t+ b
√
−1. Let Xl be the marked hyperbolic surface

such that lα(Xl) = l and the geodesics homotopic to α and
β are orthogonal. Let twt·α(Xl) be the hyperbolic surface
obtained from Xl by twisting distance t along α. The repre-
sentation corresponding to (l, τ ) coincides with the holonomy
of the pleated surface obtained from twt·α(Xl) by bending
along α with angle b.

l

l length = 

X

t
α β

b

CP 1-structures and grafting
A complex projective structure (or CP 1-structure) is a geometric structure locally

modelled on CP 1 whose transition functions are in PSL2C. By analytic continuation
of the local structure, we obtain a developing map dev : S̃ → CP 1 and a holonomy
representation ρ : π1(S) → PSL2C so that dev is ρ-equivariant. Conversely such pair
(dev, ρ) determines a CP 1-structure.
A hyperbolic structure on S gives a CP 1-structure given by the uniformization

S̃ ∼= H2 ⊂ CP 1. We can construct a CP 1-structure from a (marked) hyperbolic struc-
ture X by inserting annulus of height b along a simple closed geodesic γ, denote it by
Grb·γ(X). This construction is called a grafting.

grafting−−−−→ −→

As in the definition of Teichmüller space, we let P (S) be the set of marked CP 1-
structures. The grafting operation is generalized for measured laminations. We denote
the Teichmüller space of S by T (S).
Theorem (Thurston, Kamishima-Tan)✓ ✏
The grafting map

Gr : ML(S)× T (S) → P (S)

∈ ∈

(µ,X) )→ Grµ(X)

is a homeomorphism. We call this Thurston coordinates.✒ ✑
Let H = {τ ∈ C | Im(τ ) ≥ 0}. The complex earthquake H → P (S) for the simple

closed curve α is defined by

Eq(t+b
√
−1)·α(Xl) = Grb·α(twt·α(Xl)).

(Instead of α, complex earthquake is defined for any non-zero measured lamination. The
domain H can be extended to include some domain in the lower half plane [Mc].) The
holonomy gives a map hol : P (S) → X(S), which is known to be a local homeomor-
phism. By the definition of the grafting, we have

hol(Eq(t+b
√
−1)·α(Xl)) = t + b

√
−1 ∈ X(l) mod 2π

√
−1Z.

In summary:
Diagram 1✓ ✏

QF (S) ⊂ AH(S) ⊂ X(S)
hol←− P (S) : complex 2-dim

⊂ ⊂ ⊂

QF (l) ⊂ X(l) ← EqH·α(Xl) ←− H : complex 1-dim
✒ ✑
Consider the set of CP 1-structures with quasi-Fuchsian holonomy, i.e. hol−1(QF (S)).

There exists a standard component Q0 consisting of CP 1-structures with injective de-
veloping maps. By Goldman’s results, any other component is obtained from Q0 by
2π-grafting along a multicurve µ on S. We denote the corresponding component by Qµ.
Let MLZ(S)(⊂ML(S)) be the set of multicurves on S.
Theorem (Goldman)✓ ✏

hol−1(QF (S)) =
⊔

µ∈MLZ(S)

Qµ

✒ ✑

Our proof of Theorem A
Let Dγ be the Dehn twist along a simple closed geodesic γ. Fix X ∈ T (S). Consider

the sequence {(
2π

n
Dn

β(α), X

)}

n=1,2,···
⊂ML(S)× T (S)

in the Thurston coordinates. This converges to (2π · β, X), which is in Qβ. Thus there
exists N such that (2πn D

n
β(α), X) ∈ Qβ for any n ≥ N . Applying D−nβ , we conclude

that (
2π

n
α, D−nβ (X)

)
∈ QDn

β(β)
= Qβ (∀n ≥ N).

Now we have hol(2πn α, D
−n
β (X)) ∈ X(lα(D

−n
β (X))) for any n. If hol(2πn α, D

−n
β (X)) is

in the standard component (i.e. the component containing Fuchsian representations), it
must be in Qm·α for some m ∈ Z≥0. Since β ̸= mα, hol(2πn α, D

−n
β (X)) is not in the

standard component for n ≥ N .

Further observations
• lα(D−nβ (X)) is getting longer as n → ∞, but lβ(D

−n
β (X)) is constant. As a conse-

quence, the Fenchel-Nielsen twist of D−nβ (X) with respect to α is relatively small.

•The argument above does work if we replace 2π with 2kπ (k ∈ N), of course we need
larger l. The wrapping of α of the representation is k. This should be compared with
the result of Evans-Holt [EH]

• Since QF (l) is invariant under translation τ )→ τ + l, if there is a non-standard com-
ponent, there are infinitely many. Even after taking the quotient by this translation,
QF (l) may have arbitrary many components from the above observation. Moreover,
by using Bromberg’s model near the Maskit slice [B], there might be infinitely many
components even after taking the quotient.

From the above observations with Ito’s results [I], the Goldman’s classification of
hol−1(QF (S)) looks like this: (we abbreviate Qα+β as α + β.)

l = 8.0 l = 16.0

Theorem A can be generalized as follows.
Generalization✓ ✏
Let X be a hyperbolic surface and α a simple closed geodesic on X . If lα(X) is
sufficiently large, the complex earthquake EqH·α(X) has a non-empty intersection
with Qµ for some µ /∈ 2πZ≥0 · α.✒ ✑

Actually, we can take a simple closed geodesic β intersecting α, and a similar argument
does work.
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