Exotic components in linear slices of quasi-Fuchsian punctured torus groups Yuichi Kabaya (Kyoto University)
(This poster and more information available at: https://www.math.kyoto-u.ac.jp/~kabaya/)

Basic definitions

We assume that S is a once-punctured torus.(We will generalize results in the last.) $\bullet \alpha, \beta \in \pi_{1}(S)$: generators s.t. the commutator $[\alpha, \beta]$ to be peripheral.

> We often denote the simple closed curve freely homotopic to α (resp. β) by the same symbol.

- $X(S)=\left\{\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathrm{C} \mid \operatorname{tr}(\rho([\alpha, \beta]))=-2\right\} / \sim$
where $\rho \sim \rho^{\prime}$ if they are conjugate. (PSL ${ }_{2} \mathbb{C}$-character variety)
- $A H(S)=\{[\rho] \in X(S) \mid$ discrete, faithful $\}$
- $Q F(S)=\left\{[\rho] \in A H(S) \mid \rho\left(\pi_{1}(S)\right)\right.$ is quasi-Fuchsian $\}$
- The complex length $\lambda_{\gamma}(\rho)$, for $\gamma \in \pi_{1}(S)$ and $[\rho] \in X(S)$, is a complex number characterized by $\operatorname{tr}(\rho(\gamma))=2 \cosh \left(\lambda_{\gamma}(\rho) / 2\right), \operatorname{Re}\left(\lambda_{\gamma}(\rho)\right)>0$ and $-\pi<\operatorname{Im}\left(\lambda_{\gamma}(\rho)\right) \leq \pi$. The real (resp. imaginary) part of $\lambda_{\gamma}(\rho)$ is the translation length (resp. rotation angle) of $\rho(\gamma)$.
- For a real number $l>0$, we define the linear slice by

$$
X(l)=\left\{[\rho] \mid \lambda_{\alpha}(\rho) \equiv l\right\} .
$$

- $Q F(l)=X(l) \cap Q F(S)$.

For a summary, see Diagram 1.

Known facts and experimental pictures

- $X(S)$ is complex 2-dimensional, $X(l)$ is complex 1-dimensional.
- $A H(S)$ is closed, and $Q F(S)$ is open in $X(S)$.
- $\overline{Q F(S)}=A H(S)$ (Minsky [Mi], density theorem for once punctured torus.)
- $Q F(l)$ is a union of (open) disks (McMullen [Mc], disk convexity of $Q F$)
- $Q F(l)$ contains at least one component containing all Fuchsian representation ρ satisfying $\lambda_{\alpha}(\rho)=l$. We call this component the standard component. (This component is called BM-slice and extensively studied in [KS].)
- If $l>0$ is sufficiently small, $Q F(l)$ has only one component (Otal).

We will see that $X(l)$ can be identified with $\{\tau \in \mathbb{C} \mid-\pi<\operatorname{Im}(\tau) \leq \pi\}$. In the following pictures, $Q F(l)$ is indicated by shaded regions, and the red lines correspond to Fuchsian representations
Fig. 1. Pictures of $Q F(l)$

These pictures suggest that $Q F(l)$ has more components as l getting longer. In fact: Theorem A (Komori-Yamashita)

If l is sufficiently large, $Q F(l)$ has more than one component.
We give another proof of this theorem by using complex projective structures, with a few new observations and a possible generalization.

Complex Fenchel-Nielsen coordinates We give an explicit description of $X(l)$ as a subset of \mathbb{C}.

- $X_{S L}(S)$: the $\mathrm{SL}_{2} \mathbb{C}$-character variety is defined similarly as $\mathrm{PSL}_{2} \mathbb{C}$ case.
- We have the following isomorphism:

$$
\begin{aligned}
X_{S L}(S) & \cong \cong \\
\Psi & \left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}-x y z=0\right\} \\
{[\rho] } & \longmapsto \quad(\operatorname{tr}(\rho(\alpha))), \operatorname{tr}(\rho(\beta)), \operatorname{tr}(\rho(\alpha \beta)))
\end{aligned}
$$

$X(S)$ is the quotient of $X_{S L}(S)$ by the action of $(\mathbb{Z} / 2 \mathbb{Z})^{2}$. (Explicitly, it is generated by $(x, y, z) \mapsto(-x, y,-z)$ and $(x, y, z) \mapsto(x,-y,-z)$.)

- Fix $l>0$. There exists a bijection $\{\tau \mid-\pi<\operatorname{Im}(\tau) \leq \pi\} \rightarrow X(l)$ defined by

$$
\tau \mapsto\left(2 \cosh \left(\frac{l}{2}\right), \frac{2 \cosh (\tau / 2)}{\tanh (l / 2)}, \frac{2 \cosh ((\tau+l) / 2)}{\tanh (l / 2)}\right)
$$

- The Dehn twist along α acts on $X(l)$ as $(l, \tau) \mapsto(l, \tau+l)$.

Let $\tau=t+b \sqrt{-1}$. Let X_{l} be the marked hyperbolic surface such that $l_{\alpha}\left(X_{l}\right)=l$ and the geodesics homotopic to α and β are orthogonal. Let $\operatorname{tw}_{t \cdot \alpha}\left(X_{l}\right)$ be the hyperbolic surface obtained from X_{l} by twisting distance t along α. The representation corresponding to (l, τ) coincides with the holonomy of the pleated surface obtained from $\operatorname{tw}_{t \cdot \alpha}\left(X_{l}\right)$ by bending along α with angle b.

$\mathbb{C} P^{1}$-structures and grafting

A complex projective structure (or $\mathbb{C} P^{1}$-structure) is a geometric structure locally modelled on $\mathbb{C} P^{1}$ whose transition functions are in $\mathrm{PSL}_{2} \mathbb{C}$. By analytic continuation of the local structure, we obtain a developing map dev : $\widetilde{S} \rightarrow \mathbb{C} P^{1}$ and a holonomy representation $\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C}$ so that dev is ρ-equivariant. Conversely such pair representation $\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C}$ so
$(\operatorname{dev}, \rho)$ determines a $\mathbb{C} P^{1}$-structure.
(dev, ρ) determines a $\mathbb{C} P^{1}$-structure.
A hyperbolic structure on S

S^{1} gives a
$\mathbb{C} P^{1}$-structure given by the uniformization $\widetilde{S} \cong \mathbb{H}^{2} \subset \mathbb{C} P^{1}$. We can construct a $\mathbb{C} P^{1}$-structure from a (marked) hyperbolic struc$\tilde{S} \cong \mathbb{H}^{2} \subset \mathbb{C} P^{1}$. We can construct a $\mathbb{C P}$-structure from a (marked hyperbolic struc-
ture X by inserting annulus of height b along a simple closed geodesic γ, denote it by ture X by inserting annulus of height b along a
$\operatorname{Gr}_{b \cdot \gamma}(X)$. This construction is called a grafting.

As in the definition of Teichmüller space, we let $P(S)$ be the set of marked $\mathbb{C} P^{1}$ structures. The grafting operation is generalized for measured laminations. We denote the Teichmüller space of S by $\mathcal{T}(S)$.
Theorem (Thurston, Kamishima-Tan
The grafting map

$$
\begin{array}{rlc}
\mathrm{Gr}: \mathcal{M L}(S) \times \mathcal{T}(S) & \rightarrow P(S) \\
\Psi & \uplus & \uplus \\
(\mu, X) & \mapsto \operatorname{Gr}_{\mu}(X)
\end{array}
$$

is a homeomorphism. We call this Thurston coordinates.
Let $\overline{\bar{H}}=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau) \geq 0\}$. The complex earthquake $\overline{\bar{H}} \rightarrow P(S)$ for the simple closed curve α is defined by

$$
\operatorname{Eq}_{(t+b \sqrt{-1}) \cdot \alpha}\left(X_{l}\right)=\operatorname{Gr}_{b \cdot \alpha}\left(\operatorname{tw}_{t \cdot \alpha}\left(X_{l}\right)\right)
$$

(Instead of α, complex earthquake is defined for any non-zero measured lamination. The domain $\overline{\mathbb{H}}$ can be extended to include some domain in the lower half plane [Mc].) The holonomy gives a map hol : $P(S) \rightarrow X(S)$, which is known to be a local homeomorphism. By the definition of the grafting, we have

$$
\operatorname{hol}\left(\operatorname{Eq}_{(t+b \sqrt{-1}) \cdot \alpha}\left(X_{l}\right)\right)=t+b \sqrt{-1} \in X(l) \quad \bmod 2 \pi \sqrt{-1} \mathbb{Z}
$$

In summary:

Diagram 1

$$
Q F(S) \subset A H(S) \subset X(S) \stackrel{\text { hol }}{\leftarrow} \quad P(S) \quad: \text { complex 2-dim }
$$

$$
Q F(l) \quad \subset \quad X(l) \leftarrow \mathrm{Eq}_{\overline{\bar{H}} \cdot \alpha}\left(X_{l}\right) \leftarrow \overline{\mathbb{H}}: \text { complex 1-dim }
$$

Consider the set of $\mathbb{C} P^{1}$-structures with quasi-Fuchsian holonomy, i.e. hol ${ }^{-1}(Q F(S)$) There exists a standard component Q_{0} consisting of $\mathbb{C} P^{1}$-structures with injective developing maps. By Goldman's results, any other component is obtained from Q_{0} by 2π-grafting along a multicurve μ on S. We denote the corresponding component by Q_{μ}. Let $\mathcal{M} \mathcal{L}_{\mathbb{Z}}(S)(\subset \mathcal{M} \mathcal{L}(S))$ be the set of multicurves on S.
Theorem (Goldman)
$\operatorname{hol}^{-1}(Q F(S))=\bigsqcup_{\mu \in \mathcal{M} \mathcal{L}_{\mathcal{Z}}(S)} Q_{\mu}$

Our proof of Theorem A

Let D_{γ} be the Dehn twist along a simple closed geodesic γ. Fix $X \in \mathcal{T}(S)$. Consider the sequence

$$
\left\{\left(\frac{2 \pi}{n} D_{\beta}^{n}(\alpha), X\right)\right\}_{n=1,2, \ldots} \subset \mathcal{M} \mathcal{L}(S) \times \mathcal{T}(S)
$$

in the Thurston coordinates. This converges to $(2 \pi \cdot \beta, X)$, which is in Q_{β}. Thus there exists N such that $\left(\frac{2 \pi}{n} D_{\beta}^{n}(\alpha), X\right) \in Q_{\beta}$ for any $n \geq N$. Applying D_{β}^{-n}, we conclude that

$$
\left(\frac{2 \pi}{n} \alpha, D_{\beta}^{-n}(X)\right) \in Q_{D_{\beta}^{n}(\beta)}=Q_{\beta} \quad(\forall n \geq N) .
$$

Now we have hol $\left(\frac{2 \pi}{n} \alpha, D_{\beta}^{-n}(X)\right) \in X\left(l_{\alpha}\left(D_{\beta}^{-n}(X)\right)\right)$ for any n. If $\operatorname{hol}\left(\frac{2 \pi}{n} \alpha, D_{\beta}^{-n}(X)\right)$ is Now we have hol $\left(\frac{2 \pi}{n} \alpha, D_{\beta}^{-n}(X)\right) \in X\left(l_{\alpha}\left(D_{\beta}^{-n}(X)\right)\right)$ for any n. If hol $\left(\frac{2 \pi}{n} \alpha, D_{\beta}^{-n}(X)\right)$ is
in the standard component (i.e. the component containing Fuchsian representations), it must be in $Q_{m \cdot \alpha}$ for some $m \in \mathbb{Z}_{\geq 0}$. Since $\beta \neq m \alpha$, hol $\left(\frac{2 \pi}{n} \alpha, D_{\beta}^{-n}(X)\right)$ is not in the standard component for $n \geq N$.

Further observations

- $l_{\alpha}\left(D_{\beta}^{-n}(X)\right)$ is getting longer as $n \rightarrow \infty$, but $l_{\beta}\left(D_{\beta}^{-n}(X)\right)$ is constant. As a consequence, the Fenchel-Nielsen twist of $D_{\beta}^{-n}(X)$ with respect to α is relatively small.
- The argument above does work if we replace 2π with $2 k \pi(k \in \mathbb{N})$, of course we need larger l. The wrapping of α of the representation is k. This should be compared with the result of Evans-Holt [EH]
- Since $Q F(l)$ is invariant under translation $\tau \mapsto \tau+l$, if there is a non-standard component, there are infinitely many. Even after taking the quotient by this translation, $Q F(l)$ may have arbitrary many components from the above observation. Moreover, by using Bromberg's model near the Maskit slice [B], there might be infinitely many components even after taking the quotient
From the above observations with Ito's results [I], the Goldman's classification of hol $^{-1}(Q F(S))$ looks like this: (we abbreviate $Q_{\alpha+\beta}$ as $\alpha+\beta$.)

Theorem A can be generalized as follows.
Generalization
Let X be a hyperbolic surface and α a simple closed geodesic on X. If $l_{\alpha}(X)$ is sufficiently large, the complex earthquake $\mathrm{Eq}_{\overline{\mathrm{H}} \cdot \boldsymbol{\alpha}}(X)$ has a non-empty intersection with Q_{μ} for some $\mu \notin 2 \pi \mathbb{Z}_{\geq 0} \cdot \alpha$.
Actually, we can take a simple closed geodesic β intersecting α, and a similar argument does work.

References

[B] $\begin{aligned} & \text { K. Bromberg, The space of Kleinian punctured torus groups is not locally connected, Duke Math. J. } 156 \text { (2011) } \\ & 387-427\end{aligned}$
[EH] R. Evans and J. Holt, Non-wrapping of hyperbolic interval bundles, GAFA 18 (2008) 98-119.
[]] K. Ito, Exotic projective structures and quasi-Fuchsian space, II, Duke Math. J. 140-1 (2007) 85-109
[KS] L. Keen and C. Series, Pleating invariants for punctured torus groups, Topology 43 (2004) 447-491
[KY] Y. Komori and Y.Yamashita, Linear slices of the quasi-Fuchsian space of punctured tori, Conformal geometry and
dynamics 16 (2012) 89-102. dynamics 16 (2012) 89-102.
[Mi] Y. Minsky, The classification of punctured-torus groups, Ann. Math. 149-2 (1999) 559-626. [Mc] C. McMullen, Complex earthquakes and Teichmiller theory, J. AMS. 11-2 (1998) 283-320.

