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Introduction

M : an oriented closed 3-manifold

ρ : π1(M) → PSL(2, C) : a rep. of the fund. group of M

Vol(M, ρ) ∈ R and CS(M, ρ) ∈ R/π2Z are invariants of the

representation ρ.

When ρ is a discrete faithful rep. of a hyperbolic mfd M , then

Vol and CS are the volume and the Chern-Simons invariant of

the hyperbolic metric.
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The definition of Vol and CS are generalized to the case of

manifolds with torus boundary e.g. knot complements.

A formula of i(Vol + iCS) ∈ C/π2Z was given by Neumann in

terms of triangulations of 3-manifolds.

We give a formula in terms of knot diagrams by using the

quandle formed by parabolic elements of PSL(2, C).

3



Quandle str. on C2 \ {0}

Define a binary operation ∗ on C2 \ {0} by
⎛

⎝x1
y1

⎞

⎠ ∗
⎛

⎝x2
y2

⎞

⎠ :=

⎛

⎝1 − x2y2 −x2
2

y2
2 1 + x2y2

⎞

⎠

⎛

⎝x1
y1

⎞

⎠

This satisfies the quandle axioms:

1. x ∗ x = x for x ∈ C2 \ {0}
2. The inverse of ∗y : C2 \ {0} → C2 \ {0} is given by

∗−1y :

⎛

⎝1 + x2y2 x2
2

−y2
2 1 − x2y2

⎞

⎠

3. (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)
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P : the set of parabolic elements of PSL(2, C)

(∼= the set of parabolic elements of SL(2, C) with trace 2)

P has a quandle str. by x ∗ y = y−1xy.

Define a map C2 \ {0} 2:1−−→ P by
⎛

⎝x
y

⎞

⎠ &→
⎛

⎝1 − xy −x2

y2 1 + xy

⎞

⎠

This map induces a quandle isomorphism P ∼= (C2 \ {0})/±
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Arc coloring by (C2 \ {0})/±

Let D be a diagram of a knot.

A map A : {arcs of D} → (C2 \ {0})/± is called an arc coloring

if it satisfies the following relation at each crossing.

x ∗ y

y

x

x, y and x ∗ y ∈ (C2 \ {0})/±
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Arc coloring of the figure eight knot

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1

−t2

)

This is the figure eight knot.
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Arc coloring of the figure eight knot

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1

−t2

)

Color two arcs.
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Arc coloring of the figure eight knot

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1

−t2

)
Consider the relation at a

crossing.
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Arc coloring of the figure eight knot

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1

−t2

)
⎛

⎝1
0

⎞

⎠ ∗−1
⎛

⎝0
t

⎞

⎠ =

⎛

⎝ 1
−t2

⎞

⎠
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Arc coloring of the figure eight knot

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1

−t2

)
Consider the relation at an-

other crossing.
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Arc coloring of the figure eight knot

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1

−t2

)
⎛

⎝0
t

⎞

⎠ ∗
⎛

⎝ 1
−t2

⎞

⎠ =

⎛

⎝ −t
t(1 + t2)

⎞

⎠
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Arc coloring of the figure eight knot

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1

−t2

)

The relation at this crossing

is
⎛

⎝

⎛

⎝0
t

⎞

⎠ ∗
⎛

⎝ −t
t(1 + t2)

⎞

⎠ =

⎞

⎠

⎛

⎝ −t3

t(1 + t2 + t4)

⎞

⎠ =

⎛

⎝1
0

⎞

⎠

⎧
⎨

⎩
(t + 1)(t2 − t + 1) = 0
t(t2 + t + 1)(t2 − t + 1) = 0

∴ t2 − t + 1 = 0
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Arc coloring of the figure eight knot

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1

−t2

)

The relation at this crossing

is
⎛

⎝

⎛

⎝ 1
−t2

⎞

⎠ ∗
⎛

⎝1
0

⎞

⎠ =

⎞

⎠

⎛

⎝1 + t2

−t2

⎞

⎠ =

⎛

⎝ −t
t(1 + t2)

⎞

⎠

⎧
⎨

⎩
t2 + t + 1 = 0
t(t2 + t + 1) = 0

∴ t2 + t + 1 = 0
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Arc coloring of the figure eight knot

There are two relations

t2 + t + 1 = 0, t2 − t + 1 = 0

which do not have any common solution. But we have a

coloring by (C2 \ {0})/± ∼= P (t = ±1+
√

3i
2 or ±1−

√
3i

2 ).

Because the trace of the longitude is −2, the coloring by P

does not lift to a coloring by C2 \ {0}. But we can color the

long knot by C2 \ {0}.
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Arc coloring of the figure eight knot

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1

−t2

)
A parabolic representation

can be obtained by the map
⎛

⎝x
y

⎞

⎠ &→
⎛

⎝1 − xy x2

−y2 1 + xy

⎞

⎠
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Arc coloring of the figure eight knot

(
1 0

−t2 1

) (
1 1
0 1

)

(
1 + t2 1
−t4 1 − t2

)

(
1 + t2 + t4 t2

−t2(1 + t2)2 1 − t2 − t4

)

A parabolic representation

can be obtained by
⎛

⎝x
y

⎞

⎠ &→
⎛

⎝1 − xy x2

−y2 1 + xy

⎞

⎠
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Arc coloring of the figure eight knot

(
1 0

−1−
√

3i
2

1

) (
1 1
0 1

)

⎛

⎝
1+

√
3i

2
1

−1−
√

3i
2

3−
√

3i
2

⎞

⎠

⎛

⎝ 0 −1+
√

3i
2

1+
√

3i
2

2

⎞

⎠

When t2 = −1+
√

3i
2 :

19



Region coloring

Let D be a diagram and A be an arc coloring by (C2 \ {0})/±.

A map D : {regions of D} → (C2 \ {0})/± is called an region

coloring if it satisfies the following relation at each arc of D.

y
x

x ∗ y
x, y and x ∗ y ∈ (C2 \ {0})/±

A pair S = (A,R) (A: arc coloring, R: region coloring) is

called a shadow coloring.
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Region coloring of the figure eight knot

(
1

1−
√

3i
2

)(
1
1

)

(
0

−1+
√

3i
2

) (
1
0

)

⎛

⎝
−1−

√
3i

2
−1+

√
3

2

⎞

⎠

⎛

⎝
3−3

√
3i

2
−1−

√
3i

2

⎞

⎠

(
2
1

)(
2

2 −
√

3i

)

(
2 −

√
3i

−1−
√

3i
2

)

(
1

2 −
√

3i

)

Put a region color at a region

e.g.

⎛

⎝1
1

⎞

⎠.
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Region coloring of the figure eight knot

(
2
1

)

(
0

−1+
√

3i
2

) (
1
0

)

(
1

1−
√

3i
2

)

⎛

⎝
−1−

√
3i

2
−1+

√
3

2

⎞

⎠

(
2

2 −
√

3i

)

(
1

2 −
√

3i

)

⎛

⎝
3−3

√
3i

2
−1−

√
3i

2

⎞

⎠

(
2 −

√
3i

−1−
√

3i
2

)

(
1
1

)

The color of an adjacent re-

gion is determined by the re-

lation.
⎛

⎝1
1

⎞

⎠ ∗−1
⎛

⎝
0

−1+
√

3i
2

⎞

⎠

=

⎛

⎝ 1
2 −

√
3i

⎞

⎠
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Region coloring of the figure eight knot

(
2
1

)

(
0

−1+
√

3i
2

) (
1
0

)

(
1

1−
√

3i
2

)

⎛

⎝
−1−

√
3i

2
−1+

√
3

2

⎞

⎠

(
2

2 −
√

3i

)

(
1

2 −
√

3i

)

⎛

⎝
3−3

√
3i

2
−1−

√
3i

2

⎞

⎠

(
2 −

√
3i

−1−
√

3i
2

)

(
1
1

)

The color of an adjacent re-

gion is determined by the re-

lation.
⎛

⎝1
1

⎞

⎠ ∗−1
⎛

⎝1
0

⎞

⎠

=

⎛

⎝2
1

⎞

⎠
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Region coloring of the figure eight knot

(
2
1

)

(
0

−1+
√

3i
2

) (
1
0

)

(
1

1−
√

3i
2

)

⎛

⎝
−1−

√
3i

2
−1+

√
3

2

⎞

⎠

(
2

2 −
√

3i

)

(
1

2 −
√

3i

)

⎛

⎝
3−3

√
3i

2
−1−

√
3i

2

⎞

⎠

(
2 −

√
3i

−1−
√

3i
2

)

(
1
1

)
The color of an adjacent re-

gion is determined by the re-

lation.
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Fix an element p0 of C2 \ {0} e.g. p0 =

⎛

⎝1
2

⎞

⎠.

At a corner colored by x y

r

(x ↔ under arc, y ↔ over arc), we let

z =
det(p0, y) det(r, x)

det(r, y) det(p0, x)
pπi =Log(det(p0, y)) + Log(det(r, x))

− Log(det(r, y)) − Log(det(p0, x)) − Log(z)

qπi =Log(det(p0, x)) + Log(det(r, y))

− Log(det(p0, r)) − Log(det(x, y)) − Log(
1

1 − z
)

where Log(z) = log |z| + i arg(z) (−π < arg(z) ≤ π)
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We remark that p, q ∈ Z.

Then define the sign in the following rule:

r

x y y x

xyyx

r r

r

+[z; p, q]

(in-out or out-in)

and

r

x y y x

xyyx

r r

r

−[z; p, q]

(in-in or out-out)

26



Let

R(z; p, q) = R(z) +
πi

2

(

qLog(z) − pLog
(

1

1 − z

))

−
π2

6
.

where R(z) is given by

R(z) = −
∫ z

0

Log(1 − t)

t
dt +

1

2
Log(z)Log(1 − z)

Theorem 1

∑

c:corners
εcR(zc; pc, qc) = i(Vol(S3 \ K, ρ) + iCS(S3 \ K, ρ))

where ρ is the parabolic representation determined by the arc

coloring.
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Background materials

X : a quandle

GX = ⟨x ∈ X|y−1xy = x ∗ y⟩ : the associated group

X has a right GX-action defined by

x ∗ (xε1
1 xε2

1 . . . xεn
n ) = (. . . ((x ∗ε1 x1) ∗ε2 x2) . . . ) ∗ xεn

n

So Z[X] is a right Z[GX]-module.
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Quandle homology

Let CR
n (X) = spanZ[GX]{(x1, . . . , xn)|xi ∈ X}. Define the bound-

ary operator ∂ : CR
n (X) → CR

n−1(X) by

∂(x1, . . . xn) =
n∑

i=1
(−1)i{(x1, . . . , x̂i, . . . , xn)

− xi(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn)}

Let M be a right Z[GX]-module. The homology of M ⊗Z[GX]

CR
n (X) is the rack homology HR

n (X;M).

Considering non-degenerate chains, we also define the quandle

homology HQ
n (X;M).
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A cycle associated with a shadow coloring

Let S be a shadow coloring by a quandle X. Assign +r⊗(x, y)

for

rx

y
and −r ⊗ (x, y) for

r x

y
. Let

C(S) =
∑

c:crossing
εcrc ⊗ (xc, yc) ∈ CQ

2 (X;Z[X]).

This is a cycle. The homology class [C(S)] in HQ
2 (X;Z[X])

(usually denoted by HQ
2 (X)X) does not depend on the diagram

and the region coloring. Moreover it only depends on the

“conjugacy” class of the arc coloring. When X = P, the

cycle only depends on the conjugacy class of the corresponding

parabolic representation.
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Simplicial quandle homology H∆
n (X)

Let C∆
n (X) = spanZ{(x0, . . . , xn)|xi ∈ X}. Define the boundary

operator ∂ : C∆
n (X) → C∆

n−1(X) by

∂(x0, . . . , xn) =
n∑

i=0
(−1)i(x0, . . . , x̂i, . . . , xn).

C∆
n (X) has a natural right action by Z[GX]. Denote the ho-

mology of C∆
n (X) ⊗Z[GX] Z by H∆

n (X). We can construct a

map

HQ
n (X;Z[X]) → H∆

n+1(X)

in the following way:
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n = 2

p

(p, r, x, y) − (p, r ∗ x, x, y)

p

y

p

p

r ∗ x

x ∗ y r ∗ y

y

r

r ∗ (xy)

r ∗ x

r ∗ (xy) x ∗ y

y

rx

r ∗ y

y y

x

rx

y

r ∗ y

x ∗ y
r ∗ (xy)

r ⊗ (x, y)

r ∗ x

−(p, r ∗ y, x ∗ y, y) + (p, r ∗ (xy), x ∗ y, y)
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n = 3

r ∗ x

r ∗ y

r ∗ (yz)

r ∗ z
x ∗ z

y

rx

r ∗ (xz)

r ∗ (xyz) x ∗ (yz)

z z

r ∗ (xy) x ∗ y

z

y ∗ z y ∗ z

z y

r ⊗ (x, y, z) &→ (p, r, x, y, z) − (p, r ∗ x, x, y, z) − (p, r ∗ y, x, x ∗ y, z)

−(p, r ∗ z, x ∗ z, y ∗ z, z) + (p, r ∗ (xy), x ∗ y, y, z)

+(p, r ∗ (xz), x ∗ z, y ∗ z, z) + (p, r ∗ (yz), x ∗ (yz), y ∗ z, z)

−(p, r ∗ (xyz), x ∗ (yz), y ∗ z, z)
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Since we have a map

HQ
n (X;Z[X]) → H∆

n+1(X),

we can construct a quandle cocycle from a cocycle of H∆
n+1(X).

When X is given by a symmetric space K\G, G-invariant closed

k-form on K\G gives a k-cocycle by integrating the form.

When X = P, P ∼= (C2 \ {0})/± ∼= P\PSL(2, C) (P is a

parabolic subgroup), then C∆
3 (X) is the complex studied by

Dupont and Zickert. We can construct a map from H∆
3 (X)

to the extended Bloch group B̂(C) (defined by W. Neumann).

This is the construction that we have seen before. But we

need careful treatment on degenerate simplices.
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Remark

Let X = K\G be a quandle. If the sequence · · · → C∆
2 (X) →

C∆
1 (X) → Ker(C∆

0 (X) → Z) → 0 is a projective resolution,

H∆
n (X) is isomorphic to the relative group homology Hn(G, K).

When X = P ∼= P\PSL(2, C), the image of [C(S)] under

the map HQ
2 (X;Z[X]) → H∆

3 (X) gives a homology class in

H3(PSL(2, C), P ).
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ありがとうございました。
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