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Introduction
M : an oriented closed 3-manifold
p:m (M) — PSL(2,C) : a rep. of the fund. group of M

Vol(M,p) € R and CS(M,p) € R/n?Z are invariants of the

representation p.

When p is a discrete faithful rep. of a hyperbolic mfd M, then
Vol and CS are the volume and the Chern-Simons invariant of

the hyperbolic metric.



T he definition of Vol and CS are generalized to the case of

manifolds with torus boundary e.g. knot complements.

A formula of i(Vol 4+ iCS) e (C/T(‘QZ was given by Neumann in

terms of triangulations of 3-manifolds.

We give a formula in terms of knot diagrams by using the

quandle formed by parabolic elements of PSL(2,C).



Quandle str. on c2\ {0}

Define a binary operation % on C2\ {0} by

T1 . o — 1 — xoyo —x% T1
Y1 Y2 Y3 1+ xoy2) \U1
T his satisfies the quandle axioms:

1. zxx=x for x € C2\ {0}
2. The inverse of xy : C2\ {0} — C2\ {0} is given by

x Ly 1+ x22y2 513%
—y5 1 —xoyo



P . the set of parabolic elements of PSL(2,C)
(= the set of parabolic elements of SL(2,C) with trace 2)

P has a quandle str. by zxy =y lzy.
: 9 2:1
Define a map C<\ {0} == P by
x 1l —xy —z?
— 2
Y Y 1+ ay

This map induces a quandle isomorphism P £ (C2\ {0})/+



Arc coloring by (c?2\ {0})/+
Let D be a diagram of a knot.

A map A : {arcs of D} — (C2\ {0})/+ is called an arc coloring

if it satisfies the following relation at each crossing.

X * Y

\ > z,y and zxy € (C2\ {0})/+




Arc coloring of the figure eight knot

This is the figure eight knot.



Arc coloring of the figure eight knot

Color two arcs.



Arc coloring of the figure eight knot

of X0 \6

Consider the relation at a

Crossing.
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Arc coloring of the figure eight knot




Arc coloring of the figure eight knot

( 1 ) Consider the relation at an-

other crossing.
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Arc coloring of the figure eight knot



Arc coloring of the figure eight knot

T he relation at this crossing
1 :
() o)
0 —t
(0) (av'o) =)
) AN
t(1+24+t%)]
2 t+1D)E°—t+1)=0
* tt2+t+1)2—-t+1)=0

( —t ) S t2_t4+1=0

o+
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Arc coloring of the figure eight knot

T he relation at this crossing

@) E
| (-0
) (%) = lav'o)

t24+t+1=0
t(t2+t+1)=0

( —t ) 24 t4+1=0
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Arc coloring of the figure eight knot

There are two relations
2 _ 2 _
t“+t+1=0, t“-—t4+1=0
which do not have any common solution. But we have a

coloring by (C2\ {0})/£ =P (t = i%\@ or il_T\@).

Because the trace of the longitude is —2, the coloring by P
does not lift to a coloring by C2\ {0}. But we can color the
long knot by C2\ {0}.
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Arc coloring of the figure eight knot

A parabolic representation
( 1 ) can be obtained by the map

T\ 1l —xy 2
J —y? 14y
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Arc coloring of the figure eight knot

o

A parabolic representation

2) can be obtained by

x 1l —xy 2
— 2

Y —y< 14y

1+ ¢% 4t t2
—t?(1+t>)? 1 —t>—t*
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Arc coloring of the figure eight knot
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Region coloring

Let D be a diagram and A be an arc coloring by (C2\ {0})/+.
A map D : {regions of D} — (C2\ {0})/+ is called an region

coloring if it satisfies the following relation at each arc of D.

> z,y and z xy € (C2\ {0})/+

A pair S = (A,R) (A:. arc coloring, R: region coloring) is

called a shadow coloring.
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Region coloring of the figure eight knot

Put a region color at a region

oo (1)
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Region coloring of the figure eight knot

1
(o) The color of an adjacent re-
gion is determined by the re-

lation.
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Region coloring of the figure eight knot

o) The color of an adjacent re-
gion is determined by the re-

lation.
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Region coloring of the figure eight knot

The color of an adjacent re-
gion is determined by the re-

lation.
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Fix an element pg of C?\ {0} e.g. pg = (;)

/

At a corner colored by / Y
T

(z < under arc, y < over arc), we let

__det(pg,y) det(r, x)

* T det(r, y) det(po, x)
pmi =Log(det(pg,y)) + Log(det(r,x))

— Log(det(r,y)) — Log(det(pg,z)) — Log(z)
qri =Log(det(pg,r)) + Log(det(r,y))
— Log(det(pg,r)) — Log(det(z,y)) — Log(

1
1l — 2z
where Log(z) = log |z| +iarg(z) (—m < arg(z) < )

)
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We remark that p,q € Z.

Then define the sign in the following rule:

AN AN AN
NN N N

(in-out or out-in) (in-in or out-out)
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Let

R(zip.q) =R(:) + = (aLog(2) - pLog (; ! )) - ~

— Z
where R(z) is given by

B /z Log(1l — t)

R(z) = .

dt 4 2Log(z)Log(l — 2)

T heorem 1

> ecR(zc; pes qe) = i(Vol(S3\ K, p) +iCS(S>\ K, p))

c.corners

where p IS the parabolic representation determined by the arc

coloring.
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Background materials

X : a quandle

Gy = (z € X|y ley =z *y) : the associated group
X has a right G y-action defined by

zx (x12P ... 25) = (.. ((@ %1 2q) x2 25) ... ) x 25"

So Z[X] is a right Z[G x]-module.



Quandle homology

Let CiH(X) = spany g, {(x1,...,2n)|z; € X}. Define the bound-
ary operator 9 : CL(X) — CI 1 (X) by
n . e
Oz, . xn) = ) (=) (z1,---, %5, Tn)
i=1

- le’L'(aj]. K Lgy oo ey Lg—1 * Ly Lj4-15 - - - 73771,)}
Let M be a right Z[G x]-module. The homology of M ®7[G ]
CE(X) is the rack homology HE(X: M).

Considering non-degenerate chains, we also define the quandle
homology Hg(X; M).
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A cycle associated with a shadow coloring

Let S be a shadow coloring by a quandle X. Assign +r® (z, v)

for i and —r ® (x,y) for Y . Let
T r r x
CE) = ¥ ere® (zeye) € CF(X; Z[X)).
c.Crossing

This is a cycle. The homology class [C(S)] in H?(X;Z[X])
(usually denoted by H?(X)X) does not depend on the diagram
and the region coloring. Moreover it only depends on the
“conjugacy’ class of the arc coloring. When X = P, the
cycle only depends on the conjugacy class of the corresponding
parabolic representation.
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Simplicial quandle homology H2(X)

Let C2(X) = spany{(zgq,...,zn)|z; € X}. Define the boundary
operator 9 : CA(X) — C2 {(X) by

n .
Nxg,...,xn) = > (—1)(zqg,..., %5, ..., Tn).
1=0

CA(X) has a natural right action by Z[Gx]. Denote the ho-
mology of C&(X) R7[G <] L by HA(X). We can construct a

map
HP(X; Z[X]) — H2 1 (X)

n

in the following way:
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n—=2

o (zy) oAy r*(xy) x*vy
/ /%/@
Tk X
r@(fl?,y) /
D p
i r*y
rx(zy)~L > ] kY
p_J :
y /Y
T *x X X r

(pa’rax)y) o (p,r*x,x,y)
—(p,?“*y,x*y,y)—l—(p,?“*(my),m*y,y)
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r* (zyz) xx*(yz) 7*(yz)

Y * 2 i Yy *xz
r* (x4 L *Z
7 N r*Zz —
- -
r* (xy) x*y
-------- N U rxuy
/ﬁy y

T x X X T

r® (z,y,z)— (p,r,z,y,2) — (p,rxz,z,y,2) — (p,r*y, T, T*x7Y,2)
—(p,rxz,x*xz,y*xz,2)+ (p,7r*x (xy),x *y,y, 2)

+(p,r* (xz),zxz,y*xz,2) + (p,r*x(yz),z* (yz),y * 2, 2)
—(p, 7 * (zyz),z x (yz),y * 2, 2)
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Since we have a map
HP (X, Z[X]) — Hi1(X),

we can construct a quandle cocycle from a cocycle of H _I_l(X).
When X is given by a symmetric space K\G, G-invariant closed

k-form on K\G gives a k-cocycle by integrating the form.

When X = P, P 2 (C?\ {0})/+ &£ P\PSL(2,C) (P is a
parabolic subgroup), then C3 (X) is the complex studied by
Dupont and Zickert. We can construct a map from H?)A(X)
to the extended Bloch group B(C) (defined by W. Neumann).
This is the construction that we have seen before. But we

need careful treatment on degenerate simplices.
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Remark

Let X = K\G be a quandle. If the sequence --- — C&(X) —
CA(X) — Ker(C§(X) — Z) — 0 is a projective resolution,
HA(X) is isomorphic to the relative group homology H, (G, K).

When X = P = P\PSL(2,C), the image of [C(S)] under
the map H?(X;Z[X]) — H£(X) gives a homology class in
H3(PSL(2,C), P).
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