Quandleによるshadow coloringと PSL $(2, C)$ 表現の体積と Chern－Simons不変量

蒲谷祐一（大阪市立大学 数学研究所）

（井上 歩氏（東京工業大学大学院理工学研究科）との共同研究）

早稲田大学 2009年12月24日

Introduction

M : an oriented closed 3-manifold
$\rho: \pi_{1}(M) \rightarrow \operatorname{PSL}(2, \mathbb{C}):$ a rep. of the fund. group of M
$\operatorname{Vol}(M, \rho) \in \mathbb{R}$ and $\operatorname{CS}(M, \rho) \in \mathbb{R} / \pi^{2} \mathbb{Z}$ are invariants of the representation ρ.

When ρ is a discrete faithful rep. of a hyperbolic $\mathrm{mfd} M$, then Vol and CS are the volume and the Chern-Simons invariant of the hyperbolic metric.

The definition of Vol and CS are generalized to the case of manifolds with torus boundary e.g. knot complements.

A formula of $i(\mathrm{Vol}+i \mathrm{CS}) \in \mathbb{C} / \pi^{2} \mathbb{Z}$ was given by Neumann in terms of triangulations of 3-manifolds.

We give a formula in terms of knot diagrams by using the quandle formed by parabolic elements of $\operatorname{PSL}(2, \mathbb{C})$.

Quandle str. on $\mathbb{C}^{2} \backslash\{0\}$

Define a binary operation $*$ on $\mathbb{C}^{2} \backslash\{0\}$ by

$$
\binom{x_{1}}{y_{1}} *\binom{x_{2}}{y_{2}}:=\left(\begin{array}{cc}
1-x_{2} y_{2} & -x_{2}^{2} \\
y_{2}^{2} & 1+x_{2} y_{2}
\end{array}\right)\binom{x_{1}}{y_{1}}
$$

This satisfies the quandle axioms:

1. $x * x=x$ for $x \in \mathbb{C}^{2} \backslash\{0\}$
2. The inverse of $* y: \mathbb{C}^{2} \backslash\{0\} \rightarrow \mathbb{C}^{2} \backslash\{0\}$ is given by

$$
*^{-1} y:\left(\begin{array}{cc}
1+x_{2} y_{2} & x_{2}^{2} \\
-y_{2}^{2} & 1-x_{2} y_{2}
\end{array}\right)
$$

3. $(x * y) * z=(x * z) *(y * z)$
\mathcal{P} : the set of parabolic elements of $\operatorname{PSL}(2, \mathbb{C})$
$(\cong$ the set of parabolic elements of $\operatorname{SL}(2, \mathbb{C})$ with trace 2$)$
\mathcal{P} has a quandle str. by $x * y=y^{-1} x y$.

Define a $\operatorname{map} \mathbb{C}^{2} \backslash\{0\} \xrightarrow{2: 1} \mathcal{P}$ by

$$
\binom{x}{y} \mapsto\left(\begin{array}{cc}
1-x y & -x^{2} \\
y^{2} & 1+x y
\end{array}\right)
$$

This map induces a quandle isomorphism $\mathcal{P} \cong\left(\mathbb{C}^{2} \backslash\{0\}\right) / \pm$

Arc coloring by $\left(\mathbb{C}^{2} \backslash\{0\}\right) / \pm$

Let D be a diagram of a knot.

A map $\mathcal{A}:\{\operatorname{arcs}$ of $D\} \rightarrow\left(\mathbb{C}^{2} \backslash\{0\}\right) / \pm$ is called an arc coloring if it satisfies the following relation at each crossing.

$$
x, y \text { and } x * y \in\left(\mathbb{C}^{2} \backslash\{0\}\right) / \pm
$$

Arc coloring of the figure eight knot

This is the figure eight knot.

Arc coloring of the figure eight knot

Color two arcs.

Arc coloring of the figure eight knot

Consider the relation at a crossing.

Arc coloring of the figure eight knot

$$
\binom{1}{0} *^{-1}\binom{0}{t}=\binom{1}{-t^{2}}
$$

Arc coloring of the figure eight knot

Consider the relation at another crossing.

Arc coloring of the figure eight knot

$$
\binom{0}{t} *\binom{1}{-t^{2}}=\binom{-t}{t\left(1+t^{2}\right)}
$$

Arc coloring of the figure eight knot

The relation at this crossing is

$$
\left.\begin{array}{c}
\left(\binom{0}{t} *\binom{-t}{t\left(1+t^{2}\right)}=\right) \\
-t^{3} \\
t\left(1+t^{2}+t^{4}\right)
\end{array}\right)=\binom{1}{0} . \begin{gathered}
\\
\left\{\begin{array}{c}
(t+1)\left(t^{2}-t+1\right)=0 \\
t\left(t^{2}+t+1\right)\left(t^{2}-t+1\right)=0 \\
\therefore t^{2}-t+1=0
\end{array}\right.
\end{gathered}
$$

Arc coloring of the figure eight knot

The relation at this crossing

$$
\begin{gathered}
\left(\binom{1}{-t^{2}} *\binom{1}{0}=\right) \\
\binom{1+t^{2}}{-t^{2}}=\binom{-t}{t\left(1+t^{2}\right)} \\
\left\{\begin{array}{c}
t^{2}+t+1=0 \\
t\left(t^{2}+t+1\right)=0 \\
\therefore t^{2}+t+1=0
\end{array}\right.
\end{gathered}
$$

Arc coloring of the figure eight knot

There are two relations

$$
t^{2}+t+1=0, \quad t^{2}-t+1=0
$$

which do not have any common solution. But we have a coloring by $\left(\mathbb{C}^{2} \backslash\{0\}\right) / \pm \cong \mathcal{P}\left(t= \pm \frac{1+\sqrt{3} i}{2}\right.$ or $\left.\pm \frac{1-\sqrt{3} i}{2}\right)$.

Because the trace of the longitude is -2 , the coloring by \mathcal{P} does not lift to a coloring by $\mathbb{C}^{2} \backslash\{0\}$. But we can color the long knot by $\mathbb{C}^{2} \backslash\{0\}$.

Arc coloring of the figure eight knot

A parabolic representation can be obtained by the map

$$
\binom{x}{y} \mapsto\left(\begin{array}{cc}
1-x y & x^{2} \\
-y^{2} & 1+x y
\end{array}\right)
$$

Arc coloring of the figure eight knot

Arc coloring of the figure eight knot

Region coloring

Let D be a diagram and \mathcal{A} be an arc coloring by $\left(\mathbb{C}^{2} \backslash\{0\}\right) / \pm$.
A map $\mathcal{D}:\{$ regions of $D\} \rightarrow\left(\mathbb{C}^{2} \backslash\{0\}\right) / \pm$ is called an region coloring if it satisfies the following relation at each arc of D.

x

A pair $\mathcal{S}=(\mathcal{A}, \mathcal{R})(\mathcal{A}$: arc coloring, \mathcal{R} : region coloring) is called a shadow coloring.

Region coloring of the figure eight knot

Region coloring of the figure eight knot

Region coloring of the figure eight knot

Region coloring of the figure eight knot

Fix an element p_{0} of $\mathbb{C}^{2} \backslash\{0\}$ e.g. $p_{0}=\binom{1}{2}$.

At a corner colored by

($x \leftrightarrow$ under arc, $y \leftrightarrow$ over arc), we let

$$
\begin{aligned}
z= & \frac{\operatorname{det}\left(p_{0}, y\right) \operatorname{det}(r, x)}{\operatorname{det}(r, y) \operatorname{det}\left(p_{0}, x\right)} \\
p \pi i= & \log \left(\operatorname{det}\left(p_{0}, y\right)\right)+\log (\operatorname{det}(r, x)) \\
& -\log (\operatorname{det}(r, y))-\log \left(\operatorname{det}\left(p_{0}, x\right)\right)-\log (z) \\
q \pi i= & \log \left(\operatorname{det}\left(p_{0}, x\right)\right)+\log (\operatorname{det}(r, y)) \\
& -\log \left(\operatorname{det}\left(p_{0}, r\right)\right)-\log (\operatorname{det}(x, y))-\log \left(\frac{1}{1-z}\right)
\end{aligned}
$$

where $\log (z)=\log |z|+i \arg (z)(-\pi<\arg (z) \leq \pi)$

We remark that $p, q \in \mathbb{Z}$.

Then define the sign in the following rule:

$$
+[z ; p, q]
$$

(in-out or out-in)

$$
-[z ; p, q]
$$

(in-in or out-out)

Let

$$
R(z ; p, q)=\mathcal{R}(z)+\frac{\pi i}{2}\left(q \log (z)-p \log \left(\frac{1}{1-z}\right)\right)-\frac{\pi^{2}}{6}
$$

where $\mathcal{R}(z)$ is given by

$$
\mathcal{R}(z)=-\int_{0}^{z} \frac{\log (1-t)}{t} d t+\frac{1}{2} \log (z) \log (1-z)
$$

Theorem 1

$$
\sum_{c: \text { corners }} \varepsilon_{c} R\left(z_{c} ; p_{c}, q_{c}\right)=i\left(\operatorname{Vol}\left(S^{3} \backslash K, \rho\right)+i \operatorname{CS}\left(S^{3} \backslash K, \rho\right)\right)
$$

where ρ is the parabolic representation determined by the arc coloring.

Background materials

X : a quandle
$G_{X}=\left\langle x \in X \mid y^{-1} x y=x * y\right\rangle:$ the associated group
X has a right G_{X}-action defined by

$$
x *\left(x_{1}^{\varepsilon_{1}} x_{1}^{\varepsilon_{2}} \ldots x_{n}^{\varepsilon_{n}}\right)=\left(\ldots\left(\left(x *^{\varepsilon_{1}} x_{1}\right) *^{\varepsilon_{2}} x_{2}\right) \ldots\right) * x_{n}^{\varepsilon_{n}}
$$

So $\mathbb{Z}[X]$ is a right $\mathbb{Z}\left[G_{X}\right]$-module.

Quandle homology

Let $C_{n}^{R}(X)=\operatorname{span}_{\mathbb{Z}\left[G_{X}\right]}\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in X\right\}$. Define the boundary operator $\partial: C_{n}^{R}(X) \rightarrow C_{n-1}^{R}(X)$ by

$$
\begin{aligned}
\partial\left(x_{1}, \ldots x_{n}\right)= & \sum_{i=1}^{n}(-1)^{i}\left\{\left(x_{1}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right)\right. \\
& \left.-x_{i}\left(x_{1} * x_{i}, \ldots, x_{i-1} * x_{i}, x_{i+1}, \ldots, x_{n}\right)\right\}
\end{aligned}
$$

Let M be a right $\mathbb{Z}\left[G_{X}\right]$-module. The homology of $M \otimes_{\mathbb{Z}\left[G_{X}\right]}$ $C_{n}^{R}(X)$ is the rack homology $H_{n}^{R}(X ; M)$.

Considering non-degenerate chains, we also define the quandle homology $H_{n}^{Q}(X ; M)$.

A cycle associated with a shadow coloring

Let \mathcal{S} be a shadow coloring by a quandle X. Assign $+r \otimes(x, y)$

$$
C(\mathcal{S})=\sum_{c: \text { crossing }} \varepsilon_{c} r_{c} \otimes\left(x_{c}, y_{c}\right) \in C_{2}^{Q}(X ; \mathbb{Z}[X])
$$

This is a cycle. The homology class $[C(\mathcal{S})]$ in $H_{2}^{Q}(X ; \mathbb{Z}[X])$ (usually denoted by $\left.H_{2}^{Q}(X)_{X}\right)$ does not depend on the diagram and the region coloring. Moreover it only depends on the "conjugacy" class of the arc coloring. When $X=\mathcal{P}$, the cycle only depends on the conjugacy class of the corresponding parabolic representation.

Simplicial quandle homology $H_{n}^{\triangle}(X)$

Let $C_{n}^{\Delta}(X)=\operatorname{span}_{\mathbb{Z}}\left\{\left(x_{0}, \ldots, x_{n}\right) \mid x_{i} \in X\right\}$. Define the boundary operator $\partial: C_{n}^{\Delta}(X) \rightarrow C_{n-1}^{\Delta}(X)$ by

$$
\partial\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right)
$$

$C_{n}^{\Delta}(X)$ has a natural right action by $\mathbb{Z}\left[G_{X}\right]$. Denote the homology of $C_{n}^{\Delta}(X) \otimes_{\mathbb{Z}\left[G_{X}\right]}^{\mathbb{Z}}$ by $H_{n}^{\Delta}(X)$. We can construct a map

$$
H_{n}^{Q}(X ; \mathbb{Z}[X]) \rightarrow H_{n+1}^{\triangle}(X)
$$

in the following way:

$n=2$

$n=3$

$$
\begin{array}{r}
r \otimes(x, y, z) \mapsto(p, r, x, y, z)-(p, r * x, x, y, z)-(p, r * y, x, x * y, z) \\
-(p, r * z, x * z, y * z, z)+(p, r *(x y), x * y, y, z) \\
+(p, r *(x z), x * z, y * z, z)+(p, r *(y z), x *(y z), y * z, z) \\
-(p, r *(x y z), x *(y z), y * z, z)
\end{array}
$$

Since we have a map

$$
H_{n}^{Q}(X ; \mathbb{Z}[X]) \rightarrow H_{n+1}^{\Delta}(X),
$$

we can construct a quandle cocycle from a cocycle of $H_{n+1}^{\Delta}(X)$. When X is given by a symmetric space $K \backslash G$, G-invariant closed k-form on $K \backslash G$ gives a k-cocycle by integrating the form.

When $X=\mathcal{P}, \mathcal{P} \cong\left(\mathbb{C}^{2} \backslash\{0\}\right) / \pm \cong P \backslash \operatorname{PSL}(2, \mathbb{C})(P$ is a parabolic subgroup), then $C_{3}^{\Delta}(X)$ is the complex studied by Dupont and Zickert. We can construct a map from $H_{3}^{\triangle}(X)$ to the extended Bloch group $\hat{\mathcal{B}}(\mathbb{C})$ (defined by W. Neumann). This is the construction that we have seen before. But we need careful treatment on degenerate simplices.

Remark

Let $X=K \backslash G$ be a quandle. If the sequence $\cdots \rightarrow C_{2}^{\Delta}(X) \rightarrow$ $C_{1}^{\Delta}(X) \rightarrow \operatorname{Ker}\left(C_{0}^{\Delta}(X) \rightarrow \mathbb{Z}\right) \rightarrow 0$ is a projective resolution, $H_{n}^{\Delta}(X)$ is isomorphic to the relative group homology $H_{n}(G, K)$.

When $X=\mathcal{P} \cong P \backslash \operatorname{PSL}(2, \mathbb{C})$, the image of $[C(\mathcal{S})]$ under the map $H_{2}^{Q}(X ; \mathbb{Z}[X]) \rightarrow H_{3}^{\Delta}(X)$ gives a homology class in $H_{3}(\operatorname{PSL}(2, \mathbb{C}), P)$.

ありがとうございました。

