Quandleによるshadow coloringと PSL(2,C)表現の体積と Chern-Simons不変量

蒲谷祐一 (大阪市立大学 数学研究所) (井上 歩氏(東京工業大学大学院理工学研究科)との共同研究)

早稲田大学 2009年12月24日

Introduction

M : an oriented closed 3-manifold

 $\rho: \pi_1(M) \to \mathsf{PSL}(2,\mathbb{C})$: a rep. of the fund. group of M

 $Vol(M, \rho) \in \mathbb{R}$ and $CS(M, \rho) \in \mathbb{R}/\pi^2\mathbb{Z}$ are invariants of the representation ρ .

When ρ is a discrete faithful rep. of a hyperbolic mfd M, then Vol and CS are the volume and the Chern-Simons invariant of the hyperbolic metric.

The definition of Vol and CS are generalized to the case of manifolds with torus boundary e.g. knot complements.

A formula of $i(Vol + iCS) \in \mathbb{C}/\pi^2\mathbb{Z}$ was given by Neumann in terms of triangulations of 3-manifolds.

We give a formula in terms of knot diagrams by using the quandle formed by parabolic elements of $PSL(2, \mathbb{C})$.

Quandle str. on $\mathbb{C}^2 \setminus \{0\}$

Define a binary operation * on $\mathbb{C}^2 \setminus \{0\}$ by

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} * \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} := \begin{pmatrix} 1 - x_2 y_2 & -x_2^2 \\ y_2^2 & 1 + x_2 y_2 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

This satisfies the quandle axioms:

1. x * x = x for $x \in \mathbb{C}^2 \setminus \{0\}$ 2. The inverse of $*y : \mathbb{C}^2 \setminus \{0\} \to \mathbb{C}^2 \setminus \{0\}$ is given by $*^{-1}y : \begin{pmatrix} 1 + x_2y_2 & x_2^2 \\ -y_2^2 & 1 - x_2y_2 \end{pmatrix}$

3. (x * y) * z = (x * z) * (y * z)

 \mathcal{P} : the set of parabolic elements of $\mathsf{PSL}(2,\mathbb{C})$

(\cong the set of parabolic elements of SL(2, \mathbb{C}) with trace 2)

 \mathcal{P} has a quandle str. by $x * y = y^{-1}xy$.

Define a map $\mathbb{C}^2 \setminus \{0\} \xrightarrow{2:1} \mathcal{P}$ by $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 - xy & -x^2 \\ y^2 & 1 + xy \end{pmatrix}$

This map induces a quandle isomorphism $\mathcal{P} \cong (\mathbb{C}^2 \setminus \{0\})/\pm$

Arc coloring by $(\mathbb{C}^2 \setminus \{0\})/\pm$

Let D be a diagram of a knot.

A map \mathcal{A} : {arcs of D} $\rightarrow (\mathbb{C}^2 \setminus \{0\})/\pm$ is called an *arc coloring* if it satisfies the following relation at each crossing.

This is the figure eight knot.

Color two arcs.

Consider the relation at a crossing.

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix} *^{-1} \begin{pmatrix} 0 \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ -t^2 \end{pmatrix}$

Consider the relation at another crossing.

 $\begin{pmatrix} 0 \\ t \end{pmatrix} * \begin{pmatrix} 1 \\ -t^2 \end{pmatrix} = \begin{pmatrix} -t \\ t(1+t^2) \end{pmatrix}$

The relation at this crossing is $\begin{pmatrix} \begin{pmatrix} 0 \\ t \end{pmatrix} * \begin{pmatrix} -t \\ t(1+t^2) \end{pmatrix} = \end{pmatrix}$ $\begin{pmatrix} -t^3 \\ t(1+t^2+t^4) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\begin{cases} (t+1)(t^2 - t + 1) = 0\\ t(t^2 + t + 1)(t^2 - t + 1) = 0 \end{cases}$ $t^2 - t + 1 = 0$

is

The relation at this crossing $\left(\begin{pmatrix} 1 \\ -t^2 \end{pmatrix} * \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \right)$ $\begin{pmatrix} 1+t^2 \\ -t^2 \end{pmatrix} = \begin{pmatrix} -t \\ t(1+t^2) \end{pmatrix}$ $\begin{cases} t^2 + t + 1 = 0 \\ t(t^2 + t + 1) = 0 \end{cases}$ $\therefore t^2 + t + 1 = 0$

There are two relations

$$t^2 + t + 1 = 0, \quad t^2 - t + 1 = 0$$

which do not have any common solution. But we have a coloring by $(\mathbb{C}^2 \setminus \{0\})/\pm \cong \mathcal{P}$ $(t = \pm \frac{1+\sqrt{3}i}{2} \text{ or } \pm \frac{1-\sqrt{3}i}{2}).$

Because the trace of the longitude is -2, the coloring by \mathcal{P} does not lift to a coloring by $\mathbb{C}^2 \setminus \{0\}$. But we can color the long knot by $\mathbb{C}^2 \setminus \{0\}$.

A parabolic representation can be obtained by the map

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 - xy & x^2 \\ -y^2 & 1 + xy \end{pmatrix}$$

A parabolic representation can be obtained by

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 - xy & x^2 \\ -y^2 & 1 + xy \end{pmatrix}$$

Region coloring

Let *D* be a diagram and \mathcal{A} be an arc coloring by $(\mathbb{C}^2 \setminus \{0\})/\pm$. A map \mathcal{D} : {regions of D} $\rightarrow (\mathbb{C}^2 \setminus \{0\})/\pm$ is called an *region coloring* if it satisfies the following relation at each arc of *D*.

A pair S = (A, R) (A: arc coloring, R: region coloring) is called a *shadow coloring*.

The color of an adjacent region is determined by the relation.

The color of an adjacent region is determined by the relation.

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} *^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

The color of an adjacent region is determined by the relation. Fix an element p_0 of $\mathbb{C}^2 \setminus \{0\}$ e.g. $p_0 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

At a corner colored by x

 $(x \leftrightarrow \text{under arc, } y \leftrightarrow \text{over arc})$, we let

$$z = \frac{\det(p_0, y) \det(r, x)}{\det(r, y) \det(p_0, x)}$$

$$p\pi i = \text{Log}(\det(p_0, y)) + \text{Log}(\det(r, x))$$

$$- \text{Log}(\det(r, y)) - \text{Log}(\det(r_0, x)) - \text{Log}(z)$$

$$q\pi i = \text{Log}(\det(p_0, x)) + \text{Log}(\det(r, y))$$

$$- \text{Log}(\det(p_0, r)) - \text{Log}(\det(r, y)) - \text{Log}(\frac{1}{1-z})$$

where $Log(z) = log |z| + i arg(z) (-\pi < arg(z) \le \pi)$

We remark that $p, q \in \mathbb{Z}$.

Then define the sign in the following rule:

Let

$$R(z; p, q) = \mathcal{R}(z) + \frac{\pi i}{2} \left(q \operatorname{Log}(z) - p \operatorname{Log}\left(\frac{1}{1-z}\right) \right) - \frac{\pi^2}{6}.$$

where $\mathcal{R}(z)$ is given by

$$\mathcal{R}(z) = -\int_0^z \frac{\log(1-t)}{t} dt + \frac{1}{2} \log(z) \log(1-z)$$

Theorem 1

$$\sum_{c:\text{corners}} \varepsilon_c R(z_c; p_c, q_c) = i(\text{Vol}(S^3 \setminus K, \rho) + i\text{CS}(S^3 \setminus K, \rho))$$

where ρ is the parabolic representation determined by the arc coloring.

Background materials

X : a quandle

$$G_X = \langle x \in X | y^{-1}xy = x * y \rangle$$
 : the associated group

X has a right G_X -action defined by

$$x * (x_1^{\varepsilon_1} x_1^{\varepsilon_2} \dots x_n^{\varepsilon_n}) = (\dots ((x *^{\varepsilon_1} x_1) *^{\varepsilon_2} x_2) \dots) * x_n^{\varepsilon_n}$$

So $\mathbb{Z}[X]$ is a right $\mathbb{Z}[G_X]$ -module.

Quandle homology

Let $C_n^R(X) = \operatorname{span}_{\mathbb{Z}[G_X]}\{(x_1, \dots, x_n) | x_i \in X\}$. Define the boundary operator $\partial : C_n^R(X) \to C_{n-1}^R(X)$ by

$$\partial(x_1, \dots, x_n) = \sum_{i=1}^n (-1)^i \{ (x_1, \dots, \widehat{x_i}, \dots, x_n) \\ -x_i (x_1 * x_i, \dots, x_{i-1} * x_i, x_{i+1}, \dots, x_n) \}$$

Let M be a right $\mathbb{Z}[G_X]$ -module. The homology of $M \otimes_{\mathbb{Z}[G_X]} C_n^R(X)$ is the rack homology $H_n^R(X; M)$.

Considering non-degenerate chains, we also define the *quandle* homology $H_n^Q(X; M)$.

A cycle associated with a shadow coloring

This is a cycle. The homology class [C(S)] in $H_2^Q(X;\mathbb{Z}[X])$ (usually denoted by $H_2^Q(X)_X$) does not depend on the diagram and the region coloring. Moreover it only depends on the "conjugacy" class of the arc coloring. When $X = \mathcal{P}$, the cycle only depends on the conjugacy class of the corresponding parabolic representation.

Simplicial quandle homology $H_n^{\Delta}(X)$

Let $C_n^{\Delta}(X) = \operatorname{span}_{\mathbb{Z}}\{(x_0, \dots, x_n) | x_i \in X\}$. Define the boundary operator $\partial : C_n^{\Delta}(X) \to C_{n-1}^{\Delta}(X)$ by

$$\partial(x_0,\ldots,x_n)=\sum_{i=0}^n(-1)^i(x_0,\ldots,\widehat{x_i},\ldots,x_n).$$

 $C_n^{\Delta}(X)$ has a natural right action by $\mathbb{Z}[G_X]$. Denote the homology of $C_n^{\Delta}(X) \otimes_{\mathbb{Z}[G_X]} \mathbb{Z}$ by $H_n^{\Delta}(X)$. We can construct a map

$$H_n^Q(X; \mathbb{Z}[X]) \to H_{n+1}^{\Delta}(X)$$

in the following way:

 $\underline{n=2}$

<u>*n* = 3</u>

$$r \otimes (x, y, z) \mapsto (p, r, x, y, z) - (p, r * x, x, y, z) - (p, r * y, x, x * y, z) -(p, r * z, x * z, y * z, z) + (p, r * (xy), x * y, y, z) +(p, r * (xz), x * z, y * z, z) + (p, r * (yz), x * (yz), y * z, z) -(p, r * (xyz), x * (yz), y * z, z)$$

$$H_n^Q(X; \mathbb{Z}[X]) \to H_{n+1}^{\Delta}(X),$$

we can construct a quandle cocycle from a cocycle of $H_{n+1}^{\Delta}(X)$. When X is given by a symmetric space $K \setminus G$, G-invariant closed k-form on $K \setminus G$ gives a k-cocycle by integrating the form.

When $X = \mathcal{P}, \ \mathcal{P} \cong (\mathbb{C}^2 \setminus \{0\})/\pm \cong P \setminus PSL(2,\mathbb{C})$ (*P* is a parabolic subgroup), then $C_3^{\Delta}(X)$ is the complex studied by Dupont and Zickert. We can construct a map from $H_3^{\Delta}(X)$ to the *extended Bloch group* $\widehat{\mathcal{B}}(\mathbb{C})$ (defined by W. Neumann). This is the construction that we have seen before. But we need careful treatment on degenerate simplices.

Remark

Let $X = K \setminus G$ be a quandle. If the sequence $\cdots \to C_2^{\Delta}(X) \to C_1^{\Delta}(X) \to \text{Ker}(C_0^{\Delta}(X) \to \mathbb{Z}) \to 0$ is a projective resolution, $H_n^{\Delta}(X)$ is isomorphic to the relative group homology $H_n(G, K)$.

When $X = \mathcal{P} \cong P \setminus \mathsf{PSL}(2,\mathbb{C})$, the image of $[C(\mathcal{S})]$ under the map $H_2^Q(X;\mathbb{Z}[X]) \to H_3^{\Delta}(X)$ gives a homology class in $H_3(\mathsf{PSL}(2,\mathbb{C}),P)$.

ありがとうございました。