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2. QUANDLE AND QUANDLE HOMOLOGY

A quandle is a set X with a binary operation = satisfying the following axioms:

(1) zxx ==z,

(2) the map *y : X — X defined by  — x * y is a bijection,

(3) (xxy)*xz=(z*xz)x(yx*z),
for any z,y,2z € X. We denote the inverse of *y by *~'y. For a quandle X, we
define the associated group Gx by (r € X|y~lry =z *xy (x,y € X)). A quandle
X has a right Gx-action in the following way. Let g = 7*25? - - - 25" be an element
of Gx where z; € X and ¢; = £1. Define zx g = (- ((z 1 @1) x°2 23) - -+ ) %" X,
One can easily check that this is a right action of Gx on X. So the free abelian
group Z[X] generated by X is a right Z[G x]-module.
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FIGURE 1. 9(g(z,y,2)) = —(9(y,2) — g2(y,2)) + (9(z, 2) — gy(z *
y,2)) — (g9(x,y) — gz(x * z,y * 2)). Here x,y,z € X and g € Gx.
Edges are labeled by elements of X and vertices are labeled by
elements of Gx.

Let CE(X) be the free (left) Z[Gx]-module generated by X™. We define the
boundary map C*(X) — CEF | (X) by
01,2,y wn) = Y (1) (1, ..., Fhy .., )
i=1

— (T * Ty o T K Ty T 1, Tn).

A graphical picture of the boundary map is given in Figure 1. Let CP(X) =
spangc {(z1, T2, ..., Tn)|Ti = @i41for some i)} and C2X) = CE(X)/CP(X).
Let M be a right Z[G x]-module. We define the rack homology of M by the homol-
ogy of M @zc,] CE(X) and denote it by HF (X, M). We also define the quandle
homology of M by the homology of M ®zc ] C*Q(X) and denote it by HS(X; M).
The homology HZ(X;Z), here Z is the trivial Z|Gx]-module, is equal to the usual
quandle homology HZ(X). Let Y be a set with a right Gx-action. Then the free
abelian group Z[Y] generated by Y is a right Z|G x]-module. In this note, we will
mainly study the quandle homology HS(X;Z[X]). (This is usually denoted by
HP(X)x. )

3. GROUP HOMOLOGY

Let G be a group. Let Cy(G) = spangg{[g1]92|- - - |gn]|g; € G} and define the
boundary map 0 : C\,(G) — Cp,—1(G) by
n—1 )
g1l -1ga]) = g1lgal - - lgn] + Y (=1'[gnl .- - |gigis11gn] + (=1)"[0a] - - |gn—1]-
i=1
Let Cy(G) 2 Z|G] — Z — 0 be the augmentation map. We remark that the chain
complex {--- — C1(G) — Cy(G) — Z — 0} is acyclic. So the chain complex C,(G)
gives a free resolution of Z. Let M be a right Z[G]-module. The homology of
M ®zi¢) C«(G) is called the group homology of M and denoted by H,(G;M). In
other words, H,(G; M) = Tor’l¢) (M, 7).
We can construct a map from the rack homology HZ(X; M) to the group ho-
mology H,,(Gx;M). The following lemma is well-known.
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FIGURE 2
Lemma 3.1. Let --- — P — Py — M — 0 be a chain complex where P; are
projective (e.g. free). Let --- — C; — Cy — N — 0 be an acyclic complez.

Any homomorphism M — N can be extended to a chain map from {P.} to {C.}.
Moreover such a chain map is unique up to chain homotopy.

So there exists a unique chain map from CF(X) to C.(Gx) up to homotopy.
This map induces M ®zc ] CE(X) — M @z, C+(Gx) and then HF(X; M) —
H,(Gx;M). We give an explicit chain map f. Let (z1,...,2,) be a generator of
CE(X). We define the map f by

fl(@1,... z0)) = Z sgn (o) Yo, 1|+ [Yoil -+ [Yor,n]
gESy
where y,; € X is defined for a permutation ¢ and ¢ € {1,...,n} as follows: Let
Jis---,Jk; <1 be the numbers satisfying o (i) < o(j1) < 0(j2) < -+ < 0(j, ). Then
define
Yo,i = To(i) * (Ta(j)Ta(ia) "+ Tolin,))-
The graphical picture of this map is given in Figure 2.
Example 3.2. Let (7,y,2) € CE¥(X). Then the explicit chain map f : CE(X) —
C3(Gx) constructed above is given by
O(x,y, 2)) =[zlylz] = [z|z]y = 2] + [ylz|(x * y) * 2] = [y|lz = ylz]
+ [zl x 2ly * 2] — [2]y * 2| (z * y) * 2]
Remark 3.3. Fenn, Rourke and Sanderson defined the Rack space BX. Since
m1(BX) is isomorphic to Gx, there exists a unique map, up to homotopy, from
BX to the Eilenberg-MacLane space K(Gx, 1) which induces an isomorphism be-

tween their fundamental groups. The map we have constructed is essentially same
as this map.

As we have seen, there exists a relation between quandle homology and group
homology. We shall give another relation which seems to reflect more geometric
feature.

4. SHADOW COLORING AND FUNDAMENTAL CYCLE

Let X be a quandle. Let K be a knot in S and D be a diagram of K. An arc
coloring is a map A : {arcs of D} — X if it satisfies the following relation at each
THxy

crossing: ————>y , where z,y and z xy € X. By the Wirtinger presentation of
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a knot complement, an arc coloring determines a representation 71 (5% \ K) — Gx.
This is obtained by sending each meridian to its color.
A map D : {regions of D} — X is called a region coloring if it satisfies the

TH*Y
following relation for a pair of adjacent regions: =————>y , where z,y and zxy €
x

X. The notion of region coloring is generalized for any set Y with Gx-action, but
we only study this special case. A pair S = (A, R) is called a shadow coloring.
We define a cycle [C/(S)] of HE (X ;Z[X]) for a shadow coloring S by X. Assign

+r ® (z,y) for a positive crossing colored by I and —r ® (x,y) for a

xT T
negative crossing LJ . Then we define
r T
OS) = Y ere® (we,ye) € CL (X ZIX]),
c:crossing

here e, = £1. We can easily check that this is a cycle. The homology class [C(S)]
in HY(X;Z[X]). is invariant under Reidemeister moves and does not depend on
the choice of region coloring. Moreover we have

Proposition 4.1. The homology class [C(S)] only depends on the conjugacy class
of the representation w1 (S®\ K) — Gx induced by the arc coloring A.

5. SIMPLICIAL QUANDLE HOMOLOGY HZ(X) AND THE MAP
HY(X;Z[X]) — HnAJrl(X)
Let C2(X) = spang{(wo, ..., =,)|r; € X}. We define the boundary operator of
O (X) by

0o, .. xn) = 3 (=1 (w0, Tir oy ).
i=0
Since X has a right action of G'x, the chain complex C2 (X)) has a right action of G x
by (%o, ..., Zn)*g = (To*g, ..., Tn*g). We denote the homology of C2(X)®z(G ] Z
by H2(X) and call it a simplicial quandle homology of X.

We define a set I,, consisting of maps ¢ : {1,2,---,n} — {0,1}. We let |¢|
denote the cardinality of the set {i | (i) = 1,1 < i < n}. For each generator
r® (v1, T2, ,x,) of CE(X;Z[X]), here 7,1, ...z, € X, we define

(L) =7x* (xi(l)x;@) gty e X

w(1,0) = @i+ (@25 ) € X,
for any ¢ € I,,. Fix an element p € X. For each n > 1, we define a homomorphism
¢ CHXGZ[X]) — Oy (X) @164 Z

by
(5.1)  @r® (@raa ) = S (=D, r(0), 2 1), 2(1,2), -+ a0, ).
el,

For example, in the case n = 2 (see Figure 3),

o(r@ (z,y) = (p,r,2,y) — (p,r*x,2,y) — (D, *xy, xxy,y) + (0, (r* ) * Y,z xy,y),



(p,r,x,y) - (p,’f’*ll},ll’,y)
_(par*y7x*y7y)+(par*(my))x*yhy)

FIGURE 3

and in the case n = 3,
p(re(z,y, z)) =
(pyryx,y,2) — (p,r*x,2,Y, 2)
(p,r*y,x*xy,y,2) — (D7 * 2,X % 2,y % 2,2)
+ (p,(rxax)xy,zxy,y,z)+ (p, (r*xz)*z,2%2,y%z2)
(v, (

(o, (rxy) 2 (@ry)xz,yxz,2) = (p,((rxx)xy)x 2, (T xy) x 2,y % 2,2).
Theorem 5.1. The map ¢ : CE(X;Z[X]) — C2,,(X) ®@ziGx] Z is a chain map.

So ¢ induces a homomorphism ¢, : H¥(X;Z[X]) — H5 {(X). We remark that
the induced map ¢, : H¥(X;Z[X]) — H2_,(X) does not depend on the choice of
p € X. When n = 2, the map reduces to the map ¢, : H2Q(X;Z[X]) — HY(X)

5.1. Relative group homology. Let G be a group. Let H be a subgroup of
G. We define the relative group homology H, (G, H;Z) by the homology of the
mapping cone of the map C,(H) ®zg) Z — Cn(G) ®zg) Z. We can compute
H, (G, H;Z) as follows (see [Zic]).

Lemma 5.2. Let K be the kernel of Co(H\G) — Z. Let --- — F» - F; - K — 0
be a free resolution of K as Z[G]-module. Then H, (G, H;Z) = H,(F, ®zc L) for
n>1.

Most of important quandles have a homogeneous presentation, in other words
it can be presented in the form H\G with some group G and a subgroup H of G
[Joy]. Since the complex C2(X) is acyclic and have a Z[G]-module structure, so if

= C5(X) = CP(X) — Ker(CH(X) = Z) - 0
is a projective resolution, H2(X) is isomorphic to H, (G, H;Z). This is another
relationship with group homology.
6. QUANDLE STRUCTURE ON C2\ {0}

Define a binary operation * on C?\ {0} by

T . T2\ _ 1 — 22y —x% T
(7 Y2 ) 3 1+ z2y2) \ W1



This satisfies the quandle axioms. Let P be the set of the parabolic elements of
PSL(2,C). This has a quandle structure by conjugation = x y = y~lxy. This is
isomorphic to the quandle formed by the parabolic elements of SL(2,C) with trace
2 (or —2). Define a map C2\ {0} — P by

T\ 1—2y —2?
y y? 14ay)’

This is a quandle homomorphism and induces a quandle isomorphism P = (C?\
{0})/4. The quandle (C?\{0})/4 and therefore P has a homogeneous presentation
PSL(2,C)/P where P is the parabolic subgroup. So H5(P) is closely related to
the relative homology Hs(PSL(2,C), P;Z).

7. EXTENDED BLOCH GROUP

The pre-Bloch group P(C) is the quotient of the free abelian group generated by
symbols [z], z € C\ {0,1} and the relation given by

Y 11—t 1—x
o] =l + u [1—11‘1} " [1—21] B
for each x,y € C\ {0,1} with = # y. This relation is called the five term relation.
The Bloch group B(C) is the kernel of the homomorphism A : P(C) — C* Ay C*
defined by A([z]) =z A (1 — 2).

The extended pre-Bloch group 73(((:) is the quotient of the free abelian group
generated by [z;p, q] where z € C\ {0,1} and p,q € Z with relation given by the
lifted five term relation, which is something like a lifting of the five term relation. In
some sense, the pre-Bloch group is a lift of pre-Bloch group to the universal abelian
cover of C\ {0,1}, and p and ¢ represent the branches at 0 and 1 respectively.
The extended Bloch group is the kernel of the map P(C) — C Az C defined by
[2;p, q] — (Log(z) + pmi) A (—Log(1l — z) + ¢qmi). See [Neu] for details.

We construct a map from C2(P) — P(C) along with the work of Dupont and
Zickert [DZ]. In this note we omit the discussion on the treatment of degenerate
simplices because it makes the argument more complicated. Let (zg,...,z3) be an
element of C4(P) . Since we have P = (C2? \ {0})/4, we regarded zq,...,x3 as
2-dimensional column vectors. We define three complex numbers by

wo = Log det(zg, x3) + Log det(x1, z2) — Log det(zq, 22) — Log det(z1, x3),
(7.1) w; = Logdet(zg,z2) + Logdet(x1,23) — Logdet(xo, z1) — Log det(xz, x3),
wq = Logdet(zg, z1) + Log det(x2, z3) — Log det(zg, x3) — Log det(x1, z2).

1o 1 1
Here det(x;,x;) is the determinant of (zZQ Ié for z; = (%) and z; = <§§>,
and the Log is defined by Log(z) = log|z| + iarg(z) (—7 < arg(z) < ). Sincej x;
are well-defined only up to sign, the value Log det(x;, z;) has an ambiguity of £mi.
So we fix the value of det(x;,x;) so that 0 < arg(det(z;,z;)) < m. (We can show
that another choice of sign does not change the image. This can be shown by using
the cycle relation [Neu, Section 6].) Let z be the complex number defined by

_ (wo/ad — x3/a3) (w/a] — x3/23)
- )
(wg/x5 — w3/3) (w1/af — w3/a3)

then wq, wy, we have the following form:

wo = Log(z) + pmi, wy = —Log(l — z) + gqmi,
we = —Log(z) + Log(1l — 2) — (p + ¢)mi.



here p and ¢ are some integers. We assign [z;p,q| € ﬁ((C) for (xo,x1,29,23) €
CAL(P). This defines a map C2(P) — P(C) and induces the map HL(P) — B(C)
(here this is not precise statement, see Remark 7.2). Composing with the map
defined in Section 5, we have the following theorem.

Theorem 7.1. There exists a homomorphism
(7.2) HY (P;Z[P)) — B(C).

The image of the cycle [C(S)] by this map gives the extended Bloch invariant of the
parabolic representation.

Remark 7.2. We could not construct a map C5(P) — g((C) directory because
we could not remove the degenerate simplices. But we can deform any cycle
of HQQ (P;Z[P]) by adding boundary term so that the image by the map .
HE(P; Z[P]) — H2(P) consists of non-degenerate simplices without changing the
homology class. So we can actually construct the map (7.2).

Neumann showed in [Neu] that B(C) = H3(PSL(2,C):Z). He also defined the
Rogers dilogarithm function R : B(C) — C/n2Z which gives a combinatorial for-
mula of the Cheeger-Chern-Simons class via the isomorphism. Applying the func-
tion R to the image of [C(S)] by the map (7.2), we obtain a diagrammatic descrip-
tion of the volume and the Chern-Simons invariant.
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