The volume and the

Chern－Simons invariant of a
 PSL（2，C）－representation and quandle homology

KABAYA，Yuichi（蒲谷 祐一）
（Osaka City University
Advanced Mathematical Institute（OCAMI）） （joint with Ayumu Inoue（Tokyo Inst．of Tech．））

Waseda，January 15th 2010

We use quandles to study representations of knot groups into some group. (e.g. into $\operatorname{PSL}(2, \mathbb{C})$)

Quandle homology is a useful tool to construct a conjugacy invariant of the representations.

We apply these to PSL(2, $\mathbb{C})$-representations of a knot complement. As a result we obtain a diagrammatic description of extended Bloch invariants.

Strategy

1.

$\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow \operatorname{PSL}(2, \mathbb{C})$
parabolic representations

Arc colorings \mathcal{A} by a quandle \mathcal{P}
(Shadow colorings \mathcal{S})
2. Construct an invariant $[C(\mathcal{S})]$ with values in the quandle homology $H_{2}^{Q}(\mathcal{P} ; \mathbb{Z}[\mathcal{P}])$.
3.

Quandle homology	general theory	Simplicial quandle	Extended homology
$H_{2}^{Q}(\mathcal{P} ; \mathbb{Z}[\mathcal{P}])$	$\xrightarrow{\downarrow}$	φ_{*} Ψ	

Strategy

1.

$\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow \mathrm{PSL}(2, \mathbb{C})$
1:1
parabolic representations

Arc colorings \mathcal{A} by a quandle \mathcal{P}
(Shadow colorings \mathcal{S})
2. Construct an invariant $[C(\mathcal{S})]$ with values in the quandle homology $H_{2}^{Q}(\mathcal{P} ; \mathbb{Z}[\mathcal{P}])$.
3.

Quandle

The definition of quandles was given by Joyce in 1982.
A quandle X is a set with a binary operation $*$ satisfying

1. $x * x=x$ for any $x \in X$,
2. there exists an inverse of $* y: X \rightarrow X$, (denote it by $*^{-1} y$,)
3. $(x * y) * z=(x * z) *(y * z)$ for any $x, y, z \in X$.

Example

A group G has a quandle structure by conjugation $x * y=$ $y^{-1} x y$.

Relation with quantum invariants

The map $c: X \times X \rightarrow X \times X$ defined by $(x, y) \mapsto(y, x * y)$ is a (set theoretic) YangBaxter solution, i.e. satisfying the following relation:

Relation with quantum invariants

The map $c: X \times X \rightarrow X \times X$ defined by $(x, y) \mapsto(y, x * y)$ is a (set theoretic) YangBaxter solution, i.e. satisfying the following relation:

Arc coloring

Let D be a diagram of a knot K.

A map $\mathcal{A}:\{\operatorname{arcs}$ of $D\} \rightarrow X$ is called an arc coloring if it satisfies the following relation at each crossing.

$$
x, y \text { and } x * y \in X
$$

Arc coloring of the figure eight knot

$$
\begin{aligned}
& c * a=d \\
& a * c=b \\
& a * b=d \\
& c * d=b
\end{aligned}
$$

Arc coloring of the figure eight knot

$$
\begin{aligned}
& c * a=d \\
& a * c=b \\
& a * b=d \\
& c * d=b
\end{aligned}
$$

Arc coloring of the figure eight knot

$$
\begin{aligned}
& c * a=d \\
& a * c=b \\
& a * b=d \\
& c * d=b
\end{aligned}
$$

Arc coloring of the figure eight knot

$$
\begin{aligned}
& c * a=d \\
& a * c=b \\
& a * b=d \\
& c * d=b
\end{aligned}
$$

Associated group

For a quandle X, define the group G_{X} by $\left\langle x \in X \mid x * y=y^{-1} x y\right\rangle$. This is called the associated group of X.

An arc coloring by X gives a representation $\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G_{X}$ which sends each meridian to its color. This is a consequence of the Wirtinger presentation of a knot group.

Let \mathcal{P} be the set of the parabolic elements of $\operatorname{PSL}(2, \mathbb{C})$. This has a quandle structure by conjugation $x * y=y^{-1} x y$. As we have seen, an arc coloring gives a representation $\pi_{1}\left(S^{3} \backslash K\right) \rightarrow$ $G_{\mathcal{P}}$.

Since there is a natural surjection $G_{\mathcal{P}} \rightarrow \operatorname{PSL}(2, \mathbb{C})$, this induces a representation $\pi_{1}\left(S^{3} \backslash K\right) \rightarrow \operatorname{PSL}(2, \mathbb{C})$ which sends each peripheral subgroup to a parabolic subgroup of $\operatorname{PSL}(2, \mathbb{C})$. We call such a representation parabolic representation. A typical example is a discrete faithful representation of a hyperbolic knot complement.

Quandle homology

Let $C_{n}^{R}(X)=\operatorname{span}_{\mathbb{Z}\left[G_{X}\right]}\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in X\right\}$. Define the boundary operator $\partial: C_{n}^{R}(X) \rightarrow C_{n-1}^{R}(X)$ by

$$
\begin{aligned}
\partial\left(x_{1}, \ldots x_{n}\right)= & \sum_{i=1}^{n}(-1)^{i}\left\{\left(x_{1}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right)\right. \\
& \left.-x_{i}\left(x_{1} * x_{i}, \ldots, x_{i-1} * x_{i}, x_{i+1}, \ldots, x_{n}\right)\right\}
\end{aligned}
$$

Let M be a right $\mathbb{Z}\left[G_{X}\right]$-module. The homology group of $M \otimes_{\mathbb{Z}\left[G_{X}\right]} C_{n}^{R}(X)$ is called the rack homology $H_{n}^{R}(X ; M)$.

Factoring degenerate chains, we also define the quandle homology $H_{n}^{Q}(X ; M)$.

Let

$$
\begin{aligned}
& C_{n}^{D}(X)=\operatorname{span}_{\mathbb{Z}\left[G_{X}\right]}\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in X\right. \\
&\left.x_{i}=x_{i+1}(\text { for some } i)\right\}
\end{aligned}
$$

This is a subcomplex of $C_{n}^{R}(X)$. Let $C_{n}^{Q}(X)$ be the quotient $C_{n}^{R}(X) / C_{n}^{D}(X)$. The homology of $M \otimes_{\mathbb{Z}\left[G_{X}\right]} C_{n}^{Q}(X)$ is called the quandle homology $H_{n}^{Q}(X ; M)$

Geometric interpretation

Geometric interpretation

Geometric interpretation

Geometric interpretation

Geometric interpretation

Region coloring

Let D be a diagram and \mathcal{A} be an arc coloring by X. A map $\mathcal{D}:\{r e g i o n s$ of $D\} \rightarrow X$ is called an region coloring if it satisfies the following relation:

A pair $\mathcal{S}=(\mathcal{A}, \mathcal{R})(\mathcal{A}$: arc coloring, \mathcal{R} : region coloring) is called a shadow coloring.

Shadow coloring of the figure eight knot

$$
\begin{aligned}
& r_{2} * a=r_{1}, \quad r_{3} * c=r_{2} \\
& r_{3} * a=r_{4}, \quad r_{2} * b=r_{5} \\
& r_{5} * d=r_{6}
\end{aligned}
$$

Shadow coloring of the figure eight knot

$$
\begin{aligned}
& r_{2} * a=r_{1}, \quad r_{3} * c=r_{2} \\
& r_{3} * a=r_{4}, \quad r_{2} * b=r_{5} \\
& r_{5} * d=r_{6}
\end{aligned}
$$

Shadow coloring of the figure eight knot

$$
\begin{aligned}
& r_{2} * a=r_{1}, \quad r_{3} * c=r_{2} \\
& r_{3} * a=r_{4}, \quad r_{2} * b=r_{5} \\
& r_{5} * d=r_{6}
\end{aligned}
$$

Shadow coloring of the figure eight knot

$$
\begin{aligned}
& r_{2} * a=r_{1}, \quad r_{3} * c=r_{2} \\
& r_{3} * a=r_{4}, \quad r_{2} * b=r_{5} \\
& r_{5} * d=r_{6}
\end{aligned}
$$

Shadow coloring of the figure eight knot

$$
\begin{aligned}
& r_{2} * a=r_{1}, \quad r_{3} * c=r_{2} \\
& r_{3} * a=r_{4}, \quad r_{2} * b=r_{5} \\
& r_{5} * d=r_{6}
\end{aligned}
$$

Shadow coloring of the figure eight knot

$r_{2} * a=r_{1}, \quad r_{3} * c=r_{2}$,
$r_{3} * a=r_{4}, \quad r_{2} * b=r_{5}$,
$r_{5} * d=r_{6}$,

Shadow coloring of the figure eight knot

$$
\begin{aligned}
& r_{2} * a=r_{1}, \quad r_{3} * c=r_{2} \\
& r_{3} * a=r_{4}, \quad r_{2} * b=r_{5} \\
& r_{5} * d=r_{6}
\end{aligned}
$$

Other relations are automatically satisfied by the relations of arc colorings:

$$
r_{4} * d=r_{1}, \quad r_{4} * c=r_{5}
$$

$$
r_{1} * b=r_{6}
$$

Remark

If we fix a color of one region, then the colors of other regions are uniquely determined.

Region colorings give no information on the representation of knot group, but it plays an important role to compute volume and Chern-Simons.

Cycle $[C(\mathcal{S})]$ associated with a shadow coloring

A quandle X itself has a right G_{X}-action defined by

$$
x *\left(x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \ldots x_{n}^{\varepsilon_{n}}\right)=\left(\ldots\left(\left(x *^{\varepsilon_{1}} x_{1}\right) *^{\varepsilon_{2}} x_{2}\right) \ldots\right) *^{\varepsilon_{n}} x_{n}
$$

So the free abelian group $\mathbb{Z}[X]$ is a right $\mathbb{Z}\left[G_{X}\right]$-module.

Let \mathcal{S} be a shadow coloring by a quandle X. Assign

Let

$$
C(\mathcal{S})=\sum_{c: \text { crossing }} \varepsilon_{c} r_{c} \otimes\left(x_{c}, y_{c}\right) \in C_{2}^{Q}(X ; \mathbb{Z}[X])
$$

Example: $C(\mathcal{S})$ for the figure eight knot

$C(\mathcal{S})=$
$r_{3} \otimes(c, a)+r_{3} \otimes(b, c)$
$-r_{2} \otimes(a, b)-r_{4} \otimes(c, d)$

Example: $C(\mathcal{S})$ for the figure eight knot

$$
\begin{aligned}
& C(\mathcal{S})= \\
& \quad r_{3} \otimes(c, a)+r_{3} \otimes(b, c) \\
& \quad-r_{2} \otimes(a, b)-r_{4} \otimes(c, d)
\end{aligned}
$$

Example: $C(\mathcal{S})$ for the figure eight knot

$$
\begin{aligned}
& C(\mathcal{S})= \\
& \quad r_{3} \otimes(c, a)+r_{3} \otimes(b, c) \\
& \quad-r_{2} \otimes(a, b)-r_{4} \otimes(c, d)
\end{aligned}
$$

Example: $C(\mathcal{S})$ for the figure eight knot

$$
\begin{aligned}
& C(\mathcal{S})= \\
& \quad r_{3} \otimes(c, a)+r_{3} \otimes(b, c) \\
& \quad-r_{2} \otimes(a, b)-r_{4} \otimes(c, d)
\end{aligned}
$$

Example: $C(\mathcal{S})$ for the figure eight knot

$$
\begin{aligned}
& C(\mathcal{S})= \\
& \quad r_{3} \otimes(c, a)+r_{3} \otimes(b, c) \\
& \quad-r_{2} \otimes(a, b)-r_{4} \otimes(c, d)
\end{aligned}
$$

$C(\mathcal{S})$ is a cycle. The homology class $[C(\mathcal{S})]$ in $H_{2}^{Q}(X ; \mathbb{Z}[X])$ is invariant under the Reidemeister moves. The invariance under the Reidemeister III moves is shown in the following figure.

$\partial(r \otimes(x, y, z))=(r \otimes(x, y)+r * y \otimes(x * y, z)+r \otimes(y, z))$
$-(r \otimes(x, z)+r * x \otimes(y, z)+r * z \otimes(x * z, y * z))$

We can show that the homology class $[C(\mathcal{S})]$ does not depend on the region coloring. Moreover it only depends on the conjugacy class of the representation $\pi_{1}\left(S^{3} \backslash K\right) \rightarrow G_{X}$ induced by the arc coloring. When $X=\mathcal{P}$,

Proposition the homology class $[C(\mathcal{S})]$ in $H_{2}^{Q}(\mathcal{P}, \mathbb{Z}[\mathcal{P}])$ only depends on the conjugacy class of the parabolic representation $\pi_{1}\left(S^{3} \backslash K\right) \rightarrow \mathrm{PSL}(2, \mathbb{C})$ induced by the arc coloring \mathcal{A}.

Simplicial quandle homology $H_{n}^{\triangle}(X)$

Let $C_{n}^{\Delta}(X)=\operatorname{span}_{\mathbb{Z}}\left\{\left(x_{0}, \ldots, x_{n}\right) \mid x_{i} \in X\right\}$. Define the boundary operator $\partial: C_{n}^{\Delta}(X) \rightarrow C_{n-1}^{\Delta}(X)$ by

$$
\partial\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right)
$$

$C_{n}^{\Delta}(X)$ has a natural right action by $\mathbb{Z}\left[G_{X}\right]$. Denote the homology of $C_{n}^{\Delta}(X) \otimes_{\mathbb{Z}\left[G_{X}\right]}^{\mathbb{Z}}$ by $H_{n}^{\Delta}(X)$. We can construct a map

$$
H_{n}^{R}(X ; \mathbb{Z}[X]) \rightarrow H_{n+1}^{\Delta}(X)
$$

in the following way:

$n=2$

$n=3$

$$
\begin{array}{r}
r \otimes(x, y, z) \mapsto(p, r, x, y, z)-(p, r * x, x, y, z)-(p, r * y, x, x * y, z) \\
-(p, r * z, x * z, y * z, z)+(p, r *(x y), x * y, y, z) \\
+(p, r *(x z), x * z, y * z, z)+(p, r *(y z), x *(y z), y * z, z) \\
-(p, r *(x y z), x *(y z), y * z, z)
\end{array}
$$

For general case, let I_{n} be the set of maps $\iota:\{1,2, \cdots, n\} \rightarrow$ $\{0,1\}$. Let $|\iota|$ denote the cardinality of the set $\{k \mid \iota(k)=$ $1,1 \leq k \leq n\}$. For $r \otimes\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in C_{n}^{R}(X ; \mathbb{Z}[X])$ and $\iota \in I_{n}$, define

$$
\begin{aligned}
r(\iota) & =r *\left(x_{1}^{\iota(1)} x_{2}^{\iota(2)} \cdots x_{n}^{\iota(n)}\right) \\
x(\iota, i) & =x_{i} *\left(x_{i+1}^{\iota(i+1)} x_{i+2}^{\iota(i+2)} \cdots x_{n}^{\iota(n)}\right)
\end{aligned}
$$

Fix $p \in X$. Define $\varphi: C_{n}^{R}(X ; \mathbb{Z}[X]) \longrightarrow C_{n+1}^{\Delta}(X)_{G_{X}}$ by

$$
\begin{aligned}
& \varphi\left(r \otimes\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right) \\
& \quad=\sum_{\iota \in I_{n}}(-1)^{|\iota|}(p, r(\iota), x(\iota, 1), x(\iota, 2), \cdots, x(\iota, n)) .
\end{aligned}
$$

Theorem $\varphi: C_{n}^{R}(X ; \mathbb{Z}[X]) \longrightarrow C_{n+1}^{\Delta}(X)_{G_{X}}$ is a chain map.

Proof.

Theorem $\varphi: C_{n}^{R}(X ; \mathbb{Z}[X]) \longrightarrow C_{n+1}^{\Delta}(X)_{G_{X}}$ is a chain map.

Proof.

The map φ induces a homomorphism

$$
H_{n}^{R}(X ; \mathbb{Z}[X]) \rightarrow H_{n+1}^{\Delta}(X)
$$

So we can construct a quandle cocycle from a cocycle of $H_{n+1}^{\Delta}(X)$. If we have a function f from X^{k+1} to some abelian group A satifying

1. $\sum_{i}(-1)^{i} f\left(x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{k+1}\right)=0$ and
2. $f\left(x_{0} g, \ldots, x_{k} g\right)=f\left(x_{0}, \ldots, x_{k}\right)$ and
3. $f\left(x_{0}, \ldots, x_{k}\right)=0$ if $x_{i}=x_{i+1}$ for some i,
then f gives a cocycle of $H_{k}^{\triangle}(X)$ and a cocycle of $H_{k-1}^{Q}(X ; \mathbb{Z}[X])$.

Most of important quandles have homogeneous presentations $K \backslash G$ by some group G and a subgroup $K<G$. When X is given by a symmetric space $K \backslash G, G$-invariant closed k-form on $K \backslash G$ gives rise to a function satisfying the above conditions by integrating the form over geodesic k-simplices. For example the volume form on \mathbb{H}^{n} is such a form.

Theorem The n-dimensional hyperbolic volume is a quandle cocycle of the quandle formed by parabolic elements of Isom ${ }^{+}\left(\mathbb{H}^{n}\right)$.

We further study three dimensional case. In this case, ChernSimons invariant is also a quandle cocycle.

We will construct a map from $H_{3} \triangle(\mathcal{P})$ to the extended Bloch group $\hat{\mathcal{B}}(\mathbb{C})$ along with the work of Dupont and Zickert.

Quandle structure on $\mathbb{C}^{2} \backslash\{0\}$

Define a binary operation $*$ on $\mathbb{C}^{2} \backslash\{0\}$ by

$$
\binom{x_{1}}{y_{1}} *\binom{x_{2}}{y_{2}}:=\left(\begin{array}{cc}
1-x_{2} y_{2} & -x_{2}^{2} \\
y_{2}^{2} & 1+x_{2} y_{2}
\end{array}\right)\binom{x_{1}}{y_{1}}
$$

This satisfies the quandle axioms. Define a map $\mathbb{C}^{2} \backslash\{0\} \xrightarrow{2: 1} \mathcal{P}$ by

$$
\binom{x}{y} \mapsto\left(\begin{array}{cc}
1-x y & -x^{2} \\
y^{2} & 1+x y
\end{array}\right)
$$

This map induces a quandle isomorphism $\left(\mathbb{C}^{2} \backslash\{0\}\right) / \pm \cong \mathcal{P}$.

Dupont and Zickert's work

Let $C_{n}\left(\mathbb{C}^{2}\right)=\operatorname{span}_{\mathbb{Z}}\left\{\left(v_{0}, \ldots, v_{n}\right) \mid v_{i} \in \mathbb{C}^{2} \backslash\{0\}\right\}$. Define the boundary operator of $C_{n}\left(\mathbb{C}^{2}\right)$ by

$$
\partial\left(v_{0}, \ldots v_{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{n}\right)
$$

They defined a map from $C_{3}\left(\mathbb{C}^{2}\right)$ to the extended pre-Bloch group $\widehat{\mathcal{P}}(\mathbb{C})$ by sending $\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$ to $\left(w_{0}, w_{1}, w_{2}\right) \in \widehat{\mathcal{P}}(\mathbb{C})$ (a combinatorial flattening) where

$$
\begin{aligned}
& w_{0}=\log \operatorname{det}\left(v_{0}, v_{3}\right)+\log \operatorname{det}\left(v_{1}, v_{2}\right)-\log \operatorname{det}\left(v_{0}, v_{2}\right)-\log \operatorname{det}\left(v_{1}, v_{3}\right) \\
& w_{1}=\log \operatorname{det}\left(v_{0}, v_{2}\right)+\log \operatorname{det}\left(v_{1}, v_{3}\right)-\log \operatorname{det}\left(v_{0}, v_{1}\right)-\log \operatorname{det}\left(v_{2}, v_{3}\right) \\
& w_{2}=\log \operatorname{det}\left(v_{0}, v_{1}\right)+\log \operatorname{det}\left(v_{2}, v_{3}\right)-\log \operatorname{det}\left(v_{0}, v_{3}\right)-\log \operatorname{det}\left(v_{1}, v_{2}\right)
\end{aligned}
$$

Theorem (Dupont-Zickert) The above map induces a homomorphism

$$
H_{3}\left(C_{*}\left(\mathbb{C}^{2}\right)_{\mathrm{PSL}(2, \mathbb{C})}\right) \rightarrow \hat{\mathcal{B}}(\mathbb{C})
$$

Remark In this talk we do not discuss "degenerate" tetrahedra, for simplicity. In the original paper, they studied for $\operatorname{SL}(2, \mathbb{C})$ not $\operatorname{PSL}(2, \mathbb{C})$.

Since $\mathcal{P} \cong\left(\mathbb{C}^{2} \backslash\{0\}\right) / \pm, C_{*}^{\triangle}(\mathcal{P})$ is nearly equal to $C_{*}\left(\mathbb{C}^{2}\right)$. So we can "construct" a map from $H_{3}^{\triangle}(\mathcal{P}) \rightarrow \hat{\mathcal{B}}(\mathbb{C})$.

Theorem There is a homomorphism

$$
H_{2}^{Q}(\mathcal{P} ; \mathbb{Z}[\mathcal{P}]) \rightarrow \hat{\mathcal{B}}(\mathbb{C})
$$

The image of $[C(\mathcal{S})]$ by this map gives the extended Bloch invariant of the parabolic representation.

Our work is based on the quandle homology theory, but we do not use it for actual calculation.

Example: Arc coloring of the figure eight knot

This is the figure eight knot.

Example: Arc coloring of the figure eight knot

Color two arcs.

Example: Arc coloring of the figure eight knot

Consider the relation at a crossing.

Example: Arc coloring of the figure eight knot

$$
\binom{1}{0} *^{-1}\binom{0}{t}=\binom{1}{-t^{2}}
$$

Example: Arc coloring of the figure eight knot

Consider the relation at another crossing.

Example: Arc coloring of the figure eight knot

$$
\binom{0}{t} *\binom{1}{-t^{2}}=\binom{-t}{t\left(1+t^{2}\right)}
$$

Example: Arc coloring of the figure eight knot

The relation at this crossing is

$$
\begin{gathered}
\left(\binom{0}{t} *\binom{-t}{t\left(1+t^{2}\right)}=\right) \\
\binom{-t^{3}}{t\left(1+t^{2}+t^{4}\right)}=\binom{1}{0} \\
\left\{\begin{array}{c}
(t+1)\left(t^{2}-t+1\right)=0 \\
t\left(t^{2}+t+1\right)\left(t^{2}-t+1\right)=0 \\
\therefore t^{2}-t+1=0
\end{array}\right.
\end{gathered}
$$

Example: Arc coloring of the figure eight knot

The relation at this crossing is

$$
\begin{gathered}
\left(\binom{1}{-t^{2}} *\binom{1}{0}=\right) \\
\binom{1+t^{2}}{-t^{2}}=\binom{-t}{t\left(1+t^{2}\right)} \\
\left\{\begin{array}{c}
t^{2}+t+1=0 \\
t\left(t^{2}+t+1\right)=0 \\
\therefore t^{2}+t+1=0
\end{array}\right.
\end{gathered}
$$

Example: Arc coloring of the figure eight knot

There are two relations

$$
t^{2}+t+1=0, \quad t^{2}-t+1=0
$$

which do not have any common solution. But we have a coloring by $\left(\mathbb{C}^{2} \backslash\{0\}\right) / \pm \cong \mathcal{P}\left(t= \pm \frac{1+\sqrt{3} i}{2}\right.$ or $\left.\pm \frac{1-\sqrt{3} i}{2}\right)$.

Example: Arc coloring of the figure eight knot

A parabolic representation can be obtained by the map

$$
\binom{x}{y} \mapsto\left(\begin{array}{cc}
1-x y & x^{2} \\
-y^{2} & 1+x y
\end{array}\right)
$$

Example: Arc coloring of the figure eight knot

Example: Arc coloring of the figure eight knot

Example: Region coloring of the figure eight knot

Fix an element p_{0} of $\mathbb{C}^{2} \backslash\{0\}$ e.g. $p_{0}=\binom{1}{2}$.

At a corner colored by

($x \leftrightarrow$ under arc, $y \leftrightarrow$ over arc), we let

$$
\begin{aligned}
z= & \frac{\operatorname{det}\left(p_{0}, y\right) \operatorname{det}(r, x)}{\operatorname{det}(r, y) \operatorname{det}\left(p_{0}, x\right)} \\
p \pi i= & \log \left(\operatorname{det}\left(p_{0}, y\right)\right)+\log (\operatorname{det}(r, x)) \\
& -\log (\operatorname{det}(r, y))-\log \left(\operatorname{det}\left(p_{0}, x\right)\right)-\log (z) \\
q \pi i= & \log \left(\operatorname{det}\left(p_{0}, x\right)\right)+\log (\operatorname{det}(r, y)) \\
& -\log \left(\operatorname{det}\left(p_{0}, r\right)\right)-\log (\operatorname{det}(x, y))-\log \left(\frac{1}{1-z}\right)
\end{aligned}
$$

where $\log (z)=\log |z|+i \arg (z)(-\pi<\arg (z) \leq \pi)$

We remark that $p, q \in \mathbb{Z}$.

Then define the sign in the following rule:

$$
+[z ; p, q]
$$

(in-out or out-in)

$$
-[z ; p, q]
$$

(in-in or out-out)

Theorem

$$
\sum_{c: \text { corners }} \varepsilon_{c}\left[z_{c} ; p_{c}, q_{c}\right]
$$

is the extended Bloch invariant.

Let $\hat{L}: \hat{\mathcal{B}}(\mathbb{C}) \rightarrow \mathbb{C} / \pi^{2} \mathbb{Z}$ be the Rogers dilogarithmic function defined by Neumann. When the arc coloring corresponding to the faithful discrete representation of a hyperbolic knot K, then we have

$$
\sum_{c: \text { corners }} \varepsilon_{c} \widehat{L}\left(z_{c} ; p_{c}, q_{c}\right)=i\left(\operatorname{Vol}\left(S^{3} \backslash K\right)+i \operatorname{CS}\left(S^{3} \backslash K\right)\right) .
$$

