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Introduction

M : an oriented closed 3-manifold

ρ : π1(M)→ PSL(2, C) : a rep. of the fund. group of M

Vol(M, ρ) ∈ R and CS(M, ρ) ∈ R/π2Z are invariants of the

representation ρ.

When ρ is a discrete faithful rep. of a hyperbolic mfd M , then

Vol and CS are the volume and the Chern-Simons invariant of

the hyperbolic metric.
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The definition of Vol and CS are generalized to the case of

manifolds with torus boundary e.g. knot complements.

A formula of i(Vol + iCS) ∈ C/π2Z was given by Neumann in

terms of triangulations of 3-manifolds.

We give a formula in terms of knot diagrams by using the

quandle formed by parabolic elements of PSL(2, C).

The quandle homology plays an important role in our descrip-

tion.

3



Quandle

The definition of quandles was introduced by Joyce in 1982.

A quandle X is a set with a binary operation ∗ : X × X → X

satisfying

1. x ∗ x = x for any x ∈ X,

2. the map ∗y : X → X : x %→ x ∗ y is bijective for any y,

3. (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for any x, y, z ∈ X.

Example

G : a group, S ⊂ G : a subset closed under conjugation.
S has a quandle structure by conjugation x ∗ y = y−1xy.

(x ∗ y) ∗ z = z−1y−1xyz = (z−1y−1z)(z−1xz)(z−1yz) = (x ∗ z) ∗ (y ∗ z)
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Relation with knot theory

Assign an element of a quandle X for each

arc of a knot diagram satisfying the following

relation at each crossing. Then the axioms

correspond to the Reidemeister moves: y x ∗ y

x y

(I)

xx

x ∗ x = x

←→

(II)

∃z ∗ x = y

y

y

←→

x y

x

x

z
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Relation with knot theory

(III)

=

x ∗ y
y

x ∗ z

y ∗ z

z y ∗ z (x ∗ z) ∗ (y ∗ z)(x ∗ y) ∗ zy ∗ zz

x y z x y z
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Arc coloring

Let D be a diagram of a knot K.

We call a map A : {arcs of D} → X arc coloring if it satisfies

the following relation at each crossing.

x ∗ y

y

x

x, y and x ∗ y ∈ X
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Arc coloring of the figure eight knot

a
d

(
1
−t2

)

(
−t

t(1 + t2)

)

b c

c ∗ a = d,

a ∗ c = b,

a ∗ b = d,

c ∗ d = b.
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a
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Associated group

For a quandle X, define the group GX by ⟨x ∈ X|x∗y = y−1xy⟩.

This is called the associated group of X.

An arc coloring by X gives a representa-

tion π1(S3 \ K) → GX which sends each

meridian to its color. This is a conse-

quence of the Wirtinger presentation of a

knot group.

x ∗ y = y−1xy

y

x

When a quandle is given by a conjugation quandle S ⊂ G, an

arc coloring by S induces a representation into G.

10



Quandle structure on C2 \ {0}

Define a binary operation ∗ on C2 \ {0} by
⎛

⎝x1
y1

⎞

⎠ ∗
⎛

⎝x2
y2

⎞

⎠ :=

⎛

⎝1− x2y2 −x2
2

y2
2 1 + x2y2

⎞

⎠

⎛

⎝x1
y1

⎞

⎠

This satisfies the quandle axioms. Let P be the quandle

formed by parabolic elements of PSL(2, C). Define a map

C2 \ {0} 2:1−−→ P by
⎛

⎝x
y

⎞

⎠ %→
⎛

⎝1− xy −x2

y2 1 + xy

⎞

⎠

This map induces a quandle isomorphism (C2 \ {0})/± ∼= P.
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Arc coloring of the figure eight knot by P

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1
−t2

)

This is the figure eight knot.
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Arc coloring of the figure eight knot by P

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1
−t2

)
Color two arcs by

(C2 \ {0})/±.
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Arc coloring of the figure eight knot by P

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1
−t2

)
Consider the relation at this

crossing.
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Arc coloring of the figure eight knot by P

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1
−t2

)
⎛

⎝1
0

⎞

⎠ ∗−1
⎛

⎝0
t

⎞

⎠ =

⎛

⎝ 1
−t2

⎞

⎠
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Arc coloring of the figure eight knot by P

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1
−t2

)
Consider the relation at this

crossing.
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Arc coloring of the figure eight knot by P

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1
−t2

)
⎛

⎝0
t

⎞

⎠ ∗
⎛

⎝ 1
−t2

⎞

⎠ =

⎛

⎝ −t
t(1 + t2)

⎞

⎠
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Arc coloring of the figure eight knot by P

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1
−t2

)

The relation at this crossing

is
⎛

⎝

⎛

⎝0
t

⎞

⎠ ∗
⎛

⎝ −t
t(1 + t2)

⎞

⎠ =

⎞

⎠

⎛

⎝ −t3

t(1 + t2 + t4)

⎞

⎠ =

⎛

⎝1
0

⎞

⎠

⎧
⎨

⎩
(t + 1)(t2 − t + 1) = 0
t(t2 + t + 1)(t2 − t + 1) = 0

∴ t2 − t + 1 = 0
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Arc coloring of the figure eight knot by P

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1
−t2

)

The relation at this crossing

is
⎛

⎝

⎛

⎝ 1
−t2

⎞

⎠ ∗
⎛

⎝1
0

⎞

⎠ =

⎞

⎠

⎛

⎝1 + t2

−t2

⎞

⎠ =

⎛

⎝ −t
t(1 + t2)

⎞

⎠

⎧
⎨

⎩
t2 + t + 1 = 0
t(t2 + t + 1) = 0

∴ t2 + t + 1 = 0
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Arc coloring of the figure eight knot by P

There are two relations

t2 + t + 1 = 0, t2 − t + 1 = 0

which do not have any common solution. But we have a

coloring by (C2 \ {0})/± ∼= P.

t = ±1+
√

3i
2 or ±1−

√
3i

2
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Arc coloring of the figure eight knot by P

(
−t

t(1 + t2)

)

(
0
t

) (
1
0

)

(
1
−t2

)
A parabolic representation

can be obtained by the map
⎛

⎝x
y

⎞

⎠ %→
⎛

⎝1− xy x2

−y2 1 + xy

⎞

⎠

13-a



Arc coloring of the figure eight knot by P

(
1 0
−t2 1

) (
1 1
0 1

)

(
1 + t2 1
−t4 1− t2

)

(
1 + t2 + t4 t2

−t2(1 + t2)2 1− t2 − t4

)

A parabolic representation

can be obtained by
⎛

⎝x
y

⎞

⎠ %→
⎛

⎝1− xy x2

−y2 1 + xy

⎞

⎠

13-b



Arc coloring of the figure eight knot by P

(
1 0

−1−
√

3i
2

1

) (
1 1
0 1

)

⎛

⎝
1+
√

3i
2

1
−1−

√
3i

2
3−
√

3i
2

⎞

⎠

⎛

⎝ 0 −1+
√

3i
2

1+
√

3i
2

2

⎞

⎠

Evaluate at t2 = −1+
√

3i
2 .

We obtain a discrete faith-

ful representation of the fig-

ure eight knot complement.
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As we have seen, an arc coloring by P gives a representation

π1(S3 \ K) → PSL(2, C) which sends each meridian to the

corresponding parabolic element of PSL(2, C).

We call such a representation parabolic representation. E.g.

a discrete faithful representation of a hyperbolic knot comple-

ment.

From now on, we construct an invariant for parabolic rep-

resentations with values in quandle homology, then give a

description of the volume and the Chern-Simons invariant.
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Outline

1.

ρ : π1(S3 \K)→ PSL(2, C)

parabolic representations

1:1
←→

Arc colorings A

by the quandle P

2. Define a shadow coloring S and construct an invariant

[C(S)] with values in the quandle homology HQ
2 (P;Z[P]).

3.

Quandle general Simplicial Dupont Extended
homology theory quandle -Zickert Bloch

↓ homology ↓ group

HQ
2 (P;Z[P])

ϕ∗−−→ H∆
3 (P) −→ B̂(C)

∈ R ↓ Neumann

[C(S)] C/π2Z
i(Vol + iCS)
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Quandle homology (Carter-Jelsovsky-Kamada-Langford-

Saito, 2003)

Let CR
n (X) = spanZ[GX]{(x1, . . . , xn)|xi ∈ X}. Define the bound-

ary operator ∂ : CR
n (X)→ CR

n−1(X) by

∂(x1, . . . , xn) =
n∑

i=1
(−1)i{(x1, . . . , x̂i, . . . , xn)

− xi(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn)}

Let M be a right Z[GX]-module. The homology group of

M ⊗Z[GX] CR
n (X) is called the rack homology HR

n (X;M).
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Factoring degenerate chains, we also define the quandle ho-

mology HQ
n (X;M).

Let

CD
n (X) = spanZ[GX]{(x1, . . . , xn)|xi ∈ X,

xi = xi+1(for some i)}.

This is a subcomplex of CR
n (X). Let CQ

n (X) be the quotient

CR
n (X)/CD

n (X). The homology of M ⊗Z[GX] CQ
n (X) is called

the quandle homology HQ
n (X;M)
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Geometric interpretation CR
2 (X)→ CR

1 (X)

x

yy

x ∗ y

ggx

gy

y

x ∗ y

x

y

g(x, y)

∂

−g(y) + gx(y)

g

+g(x)− gy(x ∗ y)

n∑

i=1
(−1)i{(x1, . . . , x̂i, . . . , xn)

− xi(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn)}
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Geometric interpretation CR
2 (X)→ CR

1 (X)

x

yy

x ∗ y

ggx

gy

y

x ∗ y

x

y

r(x, y)

∂

−g(y) + gx(y)
+g(x)− gy(x ∗ y)

g

n∑

i=1
(−1)i{(x1, . . . , x̂i, . . . , xn)

− xi(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn)}

18-a



Geometric interpretation CR
2 (X)→ CR

1 (X)

x

yy

x ∗ y

ggx

gy

y

x ∗ y

x

y

r(x, y)

∂

−g(y) + gx(y)
+g(x)− gy(x ∗ y)

g

n∑

i=1
(−1)i{(x1, . . . , x̂i, . . . , xn)

− xi(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn)}

18-b



Geometric interpretation CR
3 (X)→ CR

2 (X)

y

gx

zz y

g(x, y, z)

((x ∗ y) ∗ z)

x ∗ z

zz

x ∗ y

y ∗ z y ∗ z
gz

gx
g

gy

g

g

z

x ∗ y

x ∗ z

y y

y ∗ z

((x ∗ y) ∗ z)

z

x

x
y

z z

g(x, y, z) %→ −g(y, z) + gx(y, z) + g(x, z)− gy(x ∗ y, z)

−g(x, y) + gz(x ∗ z, y ∗ z)
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Geometric interpretation CR
3 (X)→ CR

2 (X)

y

gx

zz y

g(x, y, z)

((x ∗ y) ∗ z)

x ∗ z

zz

x ∗ y

y ∗ z y ∗ z
gz

gx
g

gy

g

g

z

x ∗ y

x ∗ z

y y

y ∗ z

((x ∗ y) ∗ z)

z

x

x
y

z z

g(x, y, z) %→ −g(y, z) + gx(y, z) + g(x, z)− gy(x ∗ y, z)

−g(x, y) + gz(x ∗ z, y ∗ z)
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Geometric interpretation CR
3 (X)→ CR

2 (X)

y

gx

zz y

g(x, y, z)

((x ∗ y) ∗ z)

x ∗ z

zz

x ∗ y

y ∗ z y ∗ z
gz

gx
g

gy

g

g

z

x ∗ y

x ∗ z

y y

y ∗ z

((x ∗ y) ∗ z)

z

x

x
y

z z

g(x, y, z) %→ −g(y, z) + gx(y, z) + g(x, z)− gy(x ∗ y, z)

−g(x, y) + gz(x ∗ z, y ∗ z)
19-b



Geometric interpretation CR
3 (X)→ CR

2 (X)

y

gx

zz y

g(x, y, z)

((x ∗ y) ∗ z)

x ∗ z

zz

x ∗ y

y ∗ z y ∗ z
gz

gx
g

gy

g

g

z

x ∗ y

x ∗ z

y y

y ∗ z

((x ∗ y) ∗ z)

z

x

x
y

z z

g(x, y, z) %→ −g(y, z) + gx(y, z) + g(x, z)− gy(x ∗ y, z)

−g(x, y) + gz(x ∗ z, y ∗ z)
19-c



Region coloring

Let D be a diagram and A be an arc coloring by X. A map

D : {regions of D}→ X is called an region coloring if it satisfies

the following relation:

y
x

x ∗ y
x, y and x ∗ y ∈ X

We call a pair S = (A,R) (A: arc coloring, R: region coloring)

a shadow coloring.
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Shadow coloring of the figure eight knot

r2

d

b c

a

r1

r4

r5

r6

r3
r2 ∗ a = r1, r3 ∗ c = r2,

r3 ∗ a = r4, r2 ∗ b = r5,

r5 ∗ d = r6,
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Shadow coloring of the figure eight knot

r2

d

b c

a

r1

r4

r5

r6

r3
r2 ∗ a= r1, r3 ∗ c = r2,

r3 ∗ a = r4, r2 ∗ b = r5,

r5 ∗ d = r6,

21-a
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r2

d

b c

a

r1

r4

r5

r6

r3
r2 ∗ a = r1, r3 ∗ c = r2,

r3 ∗ a = r4, r2 ∗ b = r5,

r5 ∗ d = r6,

21-b



Shadow coloring of the figure eight knot

r2

d

b c

a

r1

r4

r5

r6

r3
r2 ∗ a = r1, r3 ∗ c = r2,

r3 ∗ a= r4, r2 ∗ b = r5,
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Shadow coloring of the figure eight knot

r2

d

b c

a

r1

r4

r5

r6

r3
r2 ∗ a = r1, r3 ∗ c = r2,

r3 ∗ a = r4, r2 ∗ b = r5,

r5 ∗ d = r6,

21-d



Shadow coloring of the figure eight knot

r2

d

b c

a

r1

r4

r5

r6

r3
r2 ∗ a = r1, r3 ∗ c = r2,

r3 ∗ a = r4, r2 ∗ b = r5,

r5 ∗ d= r6,

21-e



Shadow coloring of the figure eight knot

r2

d

b c

a

r1

r4

r5

r6

r3 If we fix a color of one re-

gion, then the colors of other

regions are uniquely deter-

mined.

21-f



Remark

Region colorings give no information on the representation of

knot group, but it is useful to compute volume and Chern-

Simons.
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Cycle [C(S)] associated with a shadow coloring

A quandle X itself has a right GX-action defined by

x ∗ (xε1
1 xε2

2 . . . xεn
n ) = (. . . ((x ∗ε1 x1) ∗ε2 x2) . . . ) ∗εn xn.

So the free abelian group Z[X] is a right Z[GX]-module.

Let S be a shadow coloring by a quandle X. Assign

+r⊗ (x, y) for

rx

y
and −r⊗ (x, y) for

r x

y
.

Let

C(S) =
∑

c:crossing
εcrc ⊗ (xc, yc) ∈ CQ

2 (X;Z[X]).
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Example: C(S) for the figure eight knot

r2

d

b c

a

r1

r4

r5

r6

r3
C(S) =

r3 ⊗ (c, a) + r3 ⊗ (b, c)

− r2 ⊗ (a, b)− r4 ⊗ (c, d)
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Example: C(S) for the figure eight knot

r2

d

b c

a

r1

r4

r5

r6

r3
C(S) =

r3 ⊗ (c, a) + r3 ⊗ (b, c)

− r2 ⊗ (a, b)− r4 ⊗ (c, d)

24-a



Example: C(S) for the figure eight knot

r2

d

b c

a

r1

r4

r5

r6

r3
C(S) =

r3 ⊗ (c, a)+r3 ⊗ (b, c)

− r2 ⊗ (a, b)− r4 ⊗ (c, d)

24-b



Example: C(S) for the figure eight knot

r2

d

b c

a

r1

r4

r5

r6

r3
C(S) =

r3 ⊗ (c, a) + r3 ⊗ (b, c)

−r2 ⊗ (a, b)− r4 ⊗ (c, d)

24-c



Example: C(S) for the figure eight knot

r2

d

b c

a

r1

r4

r5

r6

r3
C(S) =

r3 ⊗ (c, a) + r3 ⊗ (b, c)

− r2 ⊗ (a, b)−r4 ⊗ (c, d)

24-d



C(S) is a cycle. The homology class [C(S)] in HQ
2 (X;Z[X]) is

invariant under the Reidemeister moves. The invariance under

the Reidemeister III move is shown in the following figure.

y ∗ z

z y ∗ z (x ∗ y) ∗ z(x ∗ y) ∗ zy ∗ zz

x y z x y z

−=∂ y

x ∗ y

x ∗ z

∂(r ⊗ (x, y, z)) =(r ⊗ (x, y) + r ∗ y ⊗ (x ∗ y, z) + r ⊗ (y, z))

− (r ⊗ (x, z) + r ∗ x⊗ (y, z) + r ∗ z ⊗ (x ∗ z, y ∗ z))

25



We can show that the homology class [C(S)] does not depend

on the region coloring. Moreover it only depends on the con-

jugacy class of the representation π1(S3\K)→ GX induced by

the arc coloring. When X = P (quandle formed by parabolic

elements of PSL(2, C)),

Prop (Inoue - K.) The homology class [C(S)] in HQ
2 (P, Z[P])

only depends on the conjugacy class of the parabolic repre-

sentation π1(S3 \ K)→ PSL(2, C) induced by the arc coloring

A.
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Simplicial quandle homology H∆
n (X)

Let C∆
n (X) = spanZ{(x0, . . . , xn)|xi ∈ X}. Define the boundary

operator ∂ : C∆
n (X)→ C∆

n−1(X) by

∂(x0, . . . , xn) =
n∑

i=0
(−1)i(x0, . . . , x̂i, . . . , xn).

C∆
n (X) has a natural right action by Z[GX]. Denote the ho-

mology of C∆
n (X) ⊗Z[GX] Z by H∆

n (X). We can construct a

map

ϕ∗ : HR
n (X;Z[X])→ H∆

n+1(X)

in the following way:

27



n = 2 ϕ : CR
2 (X;Z[X])→ C∆

3 (X)⊗Z[GX] Z

p

(p, r, x, y)− (p, r ∗ x, x, y)

p

y

p

p

r ∗ x

x ∗ y r ∗ y

y

r

r ∗ (xy)

r ∗ x

r ∗ (xy) x ∗ y

y

rx

r ∗ y

y y

x

rx

y

r ∗ y

x ∗ y
r ∗ (xy)

r ⊗ (x, y)

r ∗ x

−(p, r ∗ y, x ∗ y, y) + (p, r ∗ (xy), x ∗ y, y)
28



For general case, let In be the set of maps ι : {1,2, · · · , n} →

{0,1}. Let |ι| denote the cardinality of the set {k | ι(k) =

1, 1 ≤ k ≤ n}. For r ⊗ (x1, x2, · · · , xn) ∈ CR
n (X;Z[X]) and

ι ∈ In, define

r(ι) = r ∗ (xι(1)
1 xι(2)

2 · · ·xι(n)
n )

x(ι, i) = xi ∗ (x
ι(i+1)
i+1 xι(i+2)

i+2 · · ·xι(n)
n ).

Fix p ∈ X. Define ϕ : CR
n (X;Z[X]) −→ C∆

n+1(X)⊗Z[GX] Z by

ϕ(r ⊗ (x1, x2, · · · , xn))

=
∑

ι∈In

(−1)|ι|(p, r(ι), x(ι,1), x(ι,2), · · · , x(ι, n)).
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Thm ϕ : CR
n (X;Z[X]) −→ C∆

n+1(X)⊗Z[GX] Z is a chain map.

Proof.

cancel

cancel

r ∗ (xy) x ∗ y

y y

x

p

r ∗ y

∗y

x

y

r ∗ y

r ∗ x

pp

r

∂

x ∗ y
y

r ∗ (xy)

p

r ∗ x

x ∗ y

y

r

r ∗ (xy)

y

x

r ∗ y

∂

ϕ

ϕ

r ∗ x r

"
30



Thm ϕ : CR
n (X;Z[X]) −→ C∆

n+1(X)⊗Z[GX] Z is a chain map.

Proof.

cancel

cancel

r ∗ (xy) x ∗ y

y y

x

p

r ∗ y

∗y

x

y

r ∗ y

r ∗ x

pp

r

∂

x ∗ y
y

r ∗ (xy)

p

r ∗ x

x ∗ y

y

r

r ∗ (xy)

y

x

r ∗ y

∂

ϕ

ϕ

r ∗ x r

"
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The result after gluing

r ∗ (xy)

r ∼ r ∗ x ∼ r ∗ y ∼ r ∗ (xy)

x

x ∗ y

y y

p p

x ∗ y

x

r

r ∗ y

r ∗ x

p p
y y

p
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The result after gluing

r ∗ (xy)

r ∼ r ∗ x ∼ r ∗ y ∼ r ∗ (xy)

x

x ∗ y

y y

p p

x ∗ y

x

r

r ∗ y

r ∗ x

p p
y y

p
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The result after gluing

r ∗ (xy)

p

r ∼ r ∗ x ∼ r ∗ y ∼ r ∗ (xy)

x

x ∗ y

y y

p p

x ∗ y

x

r

r ∗ y

r ∗ x

p p
y y
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The result after gluing

r ∗ (xy)

r ∼ r ∗ x ∼ r ∗ y ∼ r ∗ (xy)

x

x ∗ y

y y

p p

x ∗ y

x

r

r ∗ y

r ∗ x

p p
y y

p
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The result after gluing

r ∗ (xy)

r ∼ r ∗ x ∼ r ∗ y ∼ r ∗ (xy)

x

x ∗ y

y y

p p

x ∗ y

x

r

r ∗ y

r ∗ x

p p
y y

p

31-d



The result after gluing

∗y

x

x ∗ y

y y

r ∗ (xy)

p p

x ∗ y

x

r

r ∗ y

r ∗ x

p p
y y

p

r ∼ r ∗ x ∼ r ∗ y ∼ r ∗ (xy)
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The result after gluing

∗y

x

x ∗ y

y y

r ∗ (xy)

p p

x ∗ y

x

r

r ∗ y

r ∗ x

p p
y

p

r ∼ r ∗ x ∼ r ∗ y ∼ r ∗ (xy)
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The result after gluing

∗y

x

x ∗ y

y y

r ∗ (xy)

p p

x ∗ y

x

r

r ∗ y

r ∗ x

p p
y

p

r ∼ r ∗ x ∼ r ∗ y ∼ r ∗ (xy)

We obtain a triangulation of the knot complement.
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The map ϕ induces a homomorphism

HR
n (X;Z[X])→ H∆

n+1(X).

So we can construct a quandle cocycle from a cocycle of

H∆
n+1(X). If we have a function f from Xk+1 to some abelian

group A satifying

1.
∑

i(−1)if(x0, . . . , x̂i, . . . , xk+1) = 0 and

2. f(x0 ∗ y, . . . , xk ∗ y) = f(x0, . . . , xk) and

3. f(x0, . . . , xk) = 0 if xi = xi+1 for some i,

then f gives a cocycle of H∆
k (X) and a cocycle of HQ

k−1(X;Z[X]).
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If X has a ‘geometric structure’, we can construct a cocycle

for H∆
k (X).

Let Pn be the quandle formed by parabolic elements of

Isom+(Hn). For x ∈ Pn, let (x)∞ be the unique fixed point at

infinity ∂Hn of x. The function (Pn)n+1→ R defined by

(x0, x1, . . . , xn) %→ Vol(ConvHull((x0)∞, (x1)∞, . . . , (xn)∞))

satisfies the previous three conditions.

Thm (Inoue-K.) The n-dimensional hyperbolic volume is a

quandle cocycle of Pn.
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We further study three dimensional case. In this case, Chern-

Simons invariant is also a quandle cocycle.

We will construct a map from H∆
3 (P) to the extended Bloch

group B̂(C) along with the work of Dupont and Zickert.
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Bloch group

Recall that an ideal tetrahedron in H3 is parametrized by C \

{0,1}. Let P(C) be the abelian group generated by C \ {0,1}

and factored by the following five term relation:

[x]− [y] + [y/z]− [
1− x−1

1− y−1] + [
1− x

1− y
] = 0

The Bloch group B(C) is

the kernel of the map

P(C)→ C∗ ∧Z C∗ :

[z] %→ z ∧Z (1− z).

[y]

[1−x−1

1−y−1][x]

∞

x

0 y

1

[y/x]

[1−x
1−y

]
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Extended Bloch group

The extended pre-Bloch group P̂(C) is, in some sense, a uni-

versal abelian cover of P(C). P̂(C) is generated by the element

[z; p, q] with z ∈ C \ {0,1} and p, q ∈ Z. The integers p, q repre-

sents branches at 0 and 1 respectively. P̂(C) is the quotient

by lifted five term relation.

We can define a map P̂(C)→ C ∧Z C. The kernel of this map

is the extended Bloch group B̂(C).
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Neumann defined the extended Bloch group B̂(C) and showed

that B̂(C) ∼= H3(BPSL(2, C)δ;Z). He also defined the Rogers’

dilogarithmic function R : B̂(C)→ C/π2Z.

R(z; p, q) = R(z) +
πi

2

(
qLog(z)− pLog

( 1

1− z

))
−

π2

6
,

R(z) = −
∫ z

0

Log(1− t)

t
dt +

1

2
Log(z)Log(1− z)

When a closed hyperbolic 3-manifold M is given, the fun-

damental class [M ] defines an element of H3(BPSL(2, C)δ;Z).

Under the isomorphism, we obtained an element of B̂(C). Neu-

mann showed that the image of this element by R is equal to

i(Vol + iCS).
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Dupont and Zickert’s work

Let Cn(C2) = spanZ{(v0, . . . , vn)|vi ∈ C2 \ {0}} and define the

boundary operator of Cn(C2) by

∂(v0, . . . vn) =
n∑

i=0
(−1)i(v0, . . . , v̂i, . . . , vn).

Thm (Dupont-Zickert) There is an explicit map C3(C2)→

P̂(C) which induces

H3(C∗(C2)PSL(2,C))→ B̂(C)

Remark In their paper, they studied for SL(2, C) not PSL(2, C).
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Since P ∼= (C2 \ {0})/±, C∆
∗ (P) is nearly equal to C∗(C2). So

we can “construct” a map from H∆
3 (P)→ B̂(C).

Thm (Inoue-K.) There is a homomorphism

HQ
2 (P;Z[P])→ B̂(C).

The image of [C(S)] by this map gives the extended Bloch

invariant of the parabolic representation.

Our work is based on the quandle homology theory, but we

do not have to use it for actual calculation.
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Fix an element p0 of C2 \ {0}.

At a corner colored by x y

r

(x ↔ under arc, y ↔ over arc), we let

z =
det(p0, y) det(r, x)

det(r, y) det(p0, x)
pπi =Log(det(p0, y)) + Log(det(r, x))

− Log(det(r, y))− Log(det(p0, x))− Log(z)

qπi =Log(det(p0, x)) + Log(det(r, y))

− Log(det(p0, r))− Log(det(x, y))− Log(
1

1− z
)

where Log(z) = log |z| + i arg(z) (−π < arg(z) ≤ π)
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Then define the sign in the following rule:

r

x y y x

xyyx

r r

r

+[z; p, q]

(in-out or out-in)

and

r

x y y x

xyyx

r r

r

−[z; p, q]

(in-in or out-out)
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Thm (Inoue-K.)

∑

c:corners
εc[zc; pc, qc] ∈ B̂(C)

is the extended Bloch invariant.

Let R : B̂(C) → C/π2Z be the Rogers dilogarithmic function

defined by Neumann. When the arc coloring corresponding

to the faithful discrete representation of a hyperbolic knot K,

then we have

∑

c:corners
εcR(zc; pc, qc) = i(Vol(S3 \ K) + iCS(S3 \ K)).

42



Application to dihedral quandles

Let Rp = {0,1, . . . , p − 1}(= Fp) and x ∗ y = 2y − x mod p for

x, y ∈ Rp. This is called the dihedral quandle.

Let f be a group 3-cocycle of Z/p defined by

f : [a|b|c] %→ a(b + c− b− c) mod p

where a is a lift to Z. In homogeneous notation, we have

f̃ : (w, x, y, z) %→ x− w(y − x + z − y − y − x + z − y).

Let g(w, x, y, z) = f̃(w, x, y, z)+ f̃(−w,−x,−y,−z) for w, x, y, z ∈

Rp.
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The function g satisfies the following properties:

1.
∑

i(−1)ig(x0, . . . , x̂i, . . . , x4) = 0,

2. g(x0 ∗ y, . . . , x3 ∗ y) = g(x0, . . . , x3),

3. g(x0, . . . , x3) = 0 if xi = xi+1.

By our construction, this gives a cocycle on HQ
2 (Rp;Z[Rp]).

Since there exists a map HQ
2 (Rp;Z[Rp]) → HQ

3 (Rp;Z), g gives

a quandle 3-cocycle in H3
Q(Rp;Z/p).

44



On the other hand, there is a non-trivial quandle 3-cocycle of

Rp given by

(x, y, z) %→ (x− y)((2z − y)p + yp − 2zp)/p mod p

This is called the Mochizuki’s 3-cocycle. Our cocycle g must

be a constant multiple of the Mochizuki’s 3-cocycle up to

coboundary, because dimFp H3
Q(Rp;Z/p) = 1. By computer

calculation, we have:

p (Our cocycle) = c · (Mochizuki’s cocycle)
3 1
5 4
7 4
11 4
... ...
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Thank you
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