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Introduction

X : a quandle (an algebraic object)

For a knot diagram D, we can color the arcs of D by X. This

gives a cycle in some homology theory: quandle homology

theory.

If we have a cocycle of X, we obtain an invariant of knots

by evaluation of cycles by the cocycle. This is called cocycle

invariant.
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Introduction

Problem: How can we find quandle cocycles?

Can we construct quandle cocycle of X from a group cocycle

of Aut(X) or other group related to X?

I will show a construction of a quandle cocycle from a group

cocycle. Then the geometric meaning of the cocycle invariant

for the cocycle obtained from our construction.
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Quandle

The definition of quandles was introduced by Joyce in 1982.

A quandle X is a set with a binary operation ∗ : X × X → X

satisfying

1. x ∗ x = x for any x ∈ X,

2. the map ∗y : X → X : x %→ x ∗ y is bijective for any y,

3. (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for any x, y, z ∈ X.

Example

G : a group, S ⊂ G : a subset closed under conjugation.
S has a quandle structure by conjugation x ∗ y = y−1xy.

(x ∗ y) ∗ z = z−1y−1xyz = (z−1y−1z)(z−1xz)(z−1yz) = (x ∗ z) ∗ (y ∗ z)
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Relation with knot theory

Assign an element of a quandle X for each

arc of a knot diagram satisfying the following

relation at each crossing. Then the axioms

correspond to the Reidemeister moves: y x ∗ y

x y

(I)

xx

x ∗ x = x

←→

(II)

∃z ∗ x = y

y

y

←→

x y

x

x

z
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Relation with knot theory

(III)

=

x ∗ y
y

x ∗ z

y ∗ z

z y ∗ z (x ∗ z) ∗ (y ∗ z)(x ∗ y) ∗ zy ∗ zz

x y z x y z
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Quandle homology (Carter-Jelsovsky-Kamada-Langford-

Saito, 2003)

For a quandle X, define the group GX by ⟨x ∈ X|x∗y = y−1xy⟩.

This is called the associated group of X.

Let CR
n (X) = spanZ[GX]{(x1, . . . , xn)|xi ∈ X}. Define the bound-

ary operator ∂ : CR
n (X)→ CR

n−1(X) by

∂(x1, . . . , xn) =
n∑

i=1
(−1)i{(x1, . . . , x̂i, . . . , xn)

− xi(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn)}

Let M be a right Z[GX]-module. The homology group of

M ⊗Z[GX] CR
n (X) is called the rack homology HR

n (X;M).
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Factoring degenerate chains, we also define the quandle ho-

mology HQ
n (X;M).

Let

CD
n (X) = spanZ[GX]{(x1, . . . , xn)|xi ∈ X,

xi = xi+1(for some i)}.

This is a subcomplex of CR
n (X). Let CQ

n (X) be the quotient

CR
n (X)/CD

n (X). The homology of M ⊗Z[GX] CQ
n (X) is called

the quandle homology HQ
n (X;M)
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Geometric interpretation CR
2 (X)→ CR

1 (X)

x

yy

x ∗ y

ggx

gy

y

x ∗ y

x

y

g(x, y)

∂

−g(y) + gx(y)

g

+g(x)− gy(x ∗ y)

n∑

i=1
(−1)i{(x1, . . . , x̂i, . . . , xn)

− xi(x1 ∗ xi, . . . , xi−1 ∗ xi, xi+1, . . . , xn)}
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Geometric interpretation CR
3 (X)→ CR

2 (X)

y

gx

zz y

g(x, y, z)

((x ∗ y) ∗ z)

x ∗ z

zz

x ∗ y

y ∗ z y ∗ z
gz

gx
g

gy

g

g

z

x ∗ y

x ∗ z

y y

y ∗ z

((x ∗ y) ∗ z)

z

x

x
y

z z

g(x, y, z) %→ −g(y, z) + gx(y, z) + g(x, z)− gy(x ∗ y, z)

−g(x, y) + gz(x ∗ z, y ∗ z)
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A naive relationship with group homology

We can construct a map from the rack

homology HR
n (X;A) to the group homol-

ogy Hn(GX;A) by dividing an n-cube into

n! simplices.
x ∗ y

x

z

z z

z

y y

(x ∗ y) ∗ z

x ∗ z

y ∗ z
y ∗ z

For example, when n = 3,

(x, y, z) %→[x|y|z]− [x|z|y ∗ z] + [y|z|(x ∗ y) ∗ z]

−[y|x ∗ y|z] + [z|x ∗ z|y ∗ z]− [z|y ∗ z|(x ∗ y) ∗ z]
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We will give another relationship between quandle homology

and group homology.

Before mentioning the relation, we introduce the cycle asso-

ciated to a knot diagram with coloring.
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Arc coloring

Let D be a diagram of a knot K.

We call a map A : {arcs of D} → X arc coloring if it satisfies

the following relation at each crossing.

x ∗ y

y

x

x, y and x ∗ y ∈ X
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Example: Arc coloring

a
d

(
1
−t2

)

(
−t

t(1 + t2)

)

b c

c ∗ a = d,

a ∗ c = b,

a ∗ b = d,

c ∗ d = b.
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Example: Arc coloring

a
d
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1
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)

(
−t
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)

b c
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c ∗ d = b.
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Region coloring

Let D be a diagram and A be an arc coloring by X. A map

D : {regions of D}→ X is called a region coloring if it satisfies

the following relation:

y
x

x ∗ y
x, y and x ∗ y ∈ X

We call a pair S = (A,R) (A: arc coloring, R: region coloring)

a shadow coloring. (The notion of region coloring is defined

for any set with right GX-action.)
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Example: Shadow coloring

r2

d

b c

a

r1

r4

r5

r6

r3
r2 ∗ a = r1, r3 ∗ c = r2,

r3 ∗ a = r4, r2 ∗ b = r5,

r5 ∗ d = r6,
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Cycles associated with quandle colorings

A quandle X itself has a right GX-action defined by

x ∗ (xε1
1 xε2

2 . . . xεn
n ) = (. . . ((x ∗ε1 x1) ∗ε2 x2) . . . ) ∗εn xn.

So the free abelian group Z[X] is a right Z[GX]-module.

Let S = (A,R) be a shadow coloring by a quandle X. Assign

+r⊗ (x, y) for

rx

y
and −r⊗ (x, y) for

r x

y
.
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We define two chains associated with a shadow coloring

Cs(S) =
∑

c:crossing
εcrc ⊗ (xc, yc) ∈ CQ

2 (X;Z[X])

Ca(A) =
∑

c:crossing
εc(xc, yc) ∈ CQ

2 (X;Z).

We can show that Cs(S) and Ca(A) are cycles. Moreover

the homology class [Cs(S)] does not depend on the region

coloring.

Eisermann showed that the cycle [Ca] is essentially equivalent

to the monodoromy along the longitude of some representa-

tion of the knot group. So we study the invariant [Cs(S)].
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Example: Cs(S) and Ca(A)

r2

d

b c

a

r1

r4

r5

r6

r3

Cs(S) =

r3 ⊗ (c, a) + r3 ⊗ (a, c)

− r2 ⊗ (a, b)− r4 ⊗ (c, d)

Ca(S) =

(c, a) + (a, c)

− (a, b)− (c, d)
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Example: Cs(S) and Ca(A)
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b c
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Quandle cocycle invariants

Assume |X| <∞. Let A be an abelian group. For any quandle

cocycle f ∈ H2
Q(X; Func(X, A)) (or f ∈ H3

Q(X;A) ),

∑

S:colorings
⟨f, Cs(S)⟩ ∈ Z[A]

is an invariant of knots. This is called quandle cocycle invari-

ant.

We can also define an invariant for Ca by using a cocycle of

H2
Q(X;A).
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Simplicial quandle homology H∆
n (X)

Let C∆
n (X) = spanZ{(x0, . . . , xn)|xi ∈ X}. Define the boundary

operator ∂ : C∆
n (X)→ C∆

n−1(X) by

∂(x0, . . . , xn) =
n∑

i=0
(−1)i(x0, . . . , x̂i, . . . , xn).

C∆
n (X) has a natural right action by Z[GX]. Denote the ho-

mology of C∆
n (X) ⊗Z[GX] Z by H∆

n (X). We can construct a

map

ϕ∗ : HR
n (X;Z[X])→ H∆

n+1(X)

in the following way:
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n = 2 ϕ : CR
2 (X;Z[X])→ C∆

3 (X)⊗Z[GX] Z

p

(p, r, x, y)− (p, r ∗ x, x, y)

p

y

p

p

r ∗ x

x ∗ y r ∗ y

y

r

r ∗ (xy)

r ∗ x

r ∗ (xy) x ∗ y

y

rx

r ∗ y

y y

x

rx

y

r ∗ y

x ∗ y
r ∗ (xy)

r ⊗ (x, y)

r ∗ x

−(p, r ∗ y, x ∗ y, y) + (p, r ∗ (xy), x ∗ y, y)
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For general case, let In be the set of maps ι : {1,2, · · · , n} →

{0,1}. Let |ι| denote the cardinality of the set {k | ι(k) =

1, 1 ≤ k ≤ n}. For r ⊗ (x1, x2, · · · , xn) ∈ CR
n (X;Z[X]) and

ι ∈ In, define

r(ι) = r ∗ (xι(1)
1 xι(2)

2 · · ·xι(n)
n )

x(ι, i) = xi ∗ (x
ι(i+1)
i+1 xι(i+2)

i+2 · · ·xι(n)
n ).

Fix p ∈ X. Define ϕ : CR
n (X;Z[X]) −→ C∆

n+1(X)⊗Z[GX] Z by

ϕ(r ⊗ (x1, x2, · · · , xn))

=
∑

ι∈In

(−1)|ι|(p, r(ι), x(ι,1), x(ι,2), · · · , x(ι, n)).
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Thm (Inoue-K.) ϕ : CR
n (X;Z[X]) −→ C∆

n+1(X)⊗Z[GX] Z
is a chain map.

The map ϕ induces a homomorphism

HR
n (X;Z[X])→ H∆

n+1(X).

So we can construct a quandle cocycle from a cocycle of

H∆
n+1(X).
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If we have a function f from Xk+1 to some abelian group A

satisfying

1.
∑

i(−1)if(x0, . . . , x̂i, . . . , xk+1) = 0,

2. f(x0 ∗ y, . . . , xk ∗ y) = f(x0, . . . , xk) for any y, and

3. f(x0, . . . , xk) = 0 if xi = xi+1 for some i,

then f gives a cocycle of H∆
k (X) and a cocycle of HQ

k−1(X;Z[X]).

Moreover f can be regarded as a cocycle in Hk
Q(X;A)

We will construct functions satisfying these conditions from

group cocycles.
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Group cocycle

Let G be a group and A be an abelian group.

A map f : Gn→ A is called a group n-cocycle if it satisfies

f(g2, . . . , gn+1) +
n∑

i=1
(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+(−1)n+1f(g1, . . . , gn) = 0.

Define f ′ : Gn+1→ A by

f ′(g0, g1, g2, . . . , gn) := f(g0g−1
1 , g1g−1

2 , . . . , gn−1g−1
n )
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The map f ′ satisfies following properties:

(a)
n+1∑

i=0
(−1)if ′(g0, . . . , ĝi, . . . , gn+1) = 0

(b) f ′(g0g, . . . , gng) = f ′(g0, . . . , gn) (right invariance)

Conversely, any map satisfying these two properties gives a

group n-cocycle. We call this presentation of a group cocycle

homogeneous presentation.
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Example: Dihedral quandle

Rp = {0,1, . . . , p− 1} (p > 2: odd) has a quandle structure by

x ∗ y = 2y − x mod p

This is called the dihedral quandle.

We will construct quandle cocycles of Rp from group cocycles

of Z/p. Regard Z/p as Rp. Then a (normalized) group cocycle

f in homogeneous notation satisfies

1.
∑

i(−1)if(x0, . . . , x̂i, . . . , xk+1) = 0,

3. f(x0, . . . , xk) = 0 if xi = xi+1 for some i.
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So we only have to check the property:

2. f(x0 ∗ y, . . . , xk ∗ y) = f(x0, . . . , xk) for any y

But f does not satisfy this property in general. Let

f̃(x0, . . . , xn) := f(x0, . . . , xn) + f(−x0, . . . ,−xn)

Then we have

f̃(x0 ∗ y, . . . , xn ∗ y)

= f(2y − x0, . . . ,2y − xn) + f(2y + x0, . . . ,2y + xn)

= f(−x0, . . . ,−xn) + f(x0, . . . , xn) (right invariance)

= f̃(x0, . . . , xn)

Therefore f̃ satisfies the properties 1, 2 and 3. So we obtain

a quandle n-cocycle.
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Cohomology of cyclic groups

Let G = Z/p be a cyclic group (p is a positive integer). The

first cohomology H1(G;Z/p) is generated by

b1(x) = x

and the second cohomology H2(G;Z/p) is generated by

b2(x, y) =

⎧
⎨

⎩
1 if x̄ + ȳ ≥ p
0 otherwise

where x̄ is an integer 0 ≤ x̄ < p with x̄ ≡ 0 mod p. Moreover

any element of H∗(G;Z/p) is generated by a cup product of

b1’s and b2’s.
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Let

d(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x̄ + ȳ > p
−1 if x̄ + ȳ < p and xy ̸= 0
0 otherwise

Prop The quandle 3-cocycle obtained from b1b2 is given by

(x, y, z) %→ 2z(d(y − x, z − y) + d(y − x, y − z))

By computer calculation, I checked that this is 4 times the

Mochizuki’s 3-cocycle up to coboundary.

Next we will compute the quandle cocycle invariant of (2, p)-

torus knot for this quandle 3-cocycle.
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Quandle cycle invariant of the (2, p)-torus knot

3y − 2x

py − (p− 1)x

r

x y2y − x

For any x, y and r, the left figure

is a shadow coloring of the (2, p)-

torus knot.

Then

Cs(S) =
p−1∑

i=0
r ⊗ (x + i(y − x), y + i(y − x))
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Prop The quandle cocycle invariant of the (2, p)-torus knot

constructed from b1b2 ∈ H3(G;Z/p) is equal to

p2
p−1∑

i=0
t−i2 ∈ Z[t]/(tp − 1).

( Z[Z/p] ∼= Z[t]/(tp − 1) )
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Remark

Let L(p, q) be the lens space. The Dijkgraaf-Witten invariant

of L(p, q) for G = Z/p is equal to

p−1∑

i=0
t−q·i2 ∈ Z[t]/(tp − 1)

(Usually Dijkgraaf-Witten invariant is defined with values in

C and normalized by multiplying 1
|G|. I also used different

orientation convention)

Since the double branched covering of the (2, p)-torus knot

is L(p,1), it is natural to ask a relation with quandle cocycle

invariant.
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General case

G : a group. Fix an element h ∈ G.

Conj(h) = {g−1hg|g ∈ G}

Conj(h) has a quandle operation by x ∗ y = y−1xy.

Let Z(h) = {g ∈ G|gh = hg} be the centralizer of h in G.

Lemma As a set Conj(h) ∼= Z(h)\G by

g−1hg ↔ Z(h)g (right coset)
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Idea

Conj(h) ↔ Z(h)\G

Use for representation of π1 Space which G acts on

Construct a group cycle

From now on we study the quandle structure on Z(h)\G and

construct a lift of π : G→ Z(h)\G.

(Z(h)g0, . . . , Z(h)gn)! (g0, . . . , gn) lift to a group cycle

37



Idea

Conj(h) ↔ Z(h)\G

Use for representation of π1 Space which G acts on

Construct a group cycle

From now on we study the quandle structure on Z(h)\G and

construct a lift of π : G→ Z(h)\G.

(Z(h)g0, . . . , Z(h)gn)! (g0, . . . , gn) lift to a group cycle

37-a



Idea

Conj(h) ↔ Z(h)\G

Use for representation of π1 Space which G acts on

Construct a group cycle

From now on we study the quandle structure on Z(h)\G and

construct a lift of π : G→ Z(h)\G.

(Z(h)g0, . . . , Z(h)gn)! (g0, . . . , gn) lift to a group cycle

37-b



Idea

Conj(h) ↔ Z(h)\G

Use for representation of π1 Space which G acts on

Construct a group cycle

From now on we study the quandle structure on Z(h)\G and

construct a lift of π : G→ Z(h)\G.

(Z(h)g0, . . . , Z(h)gn)! (g0, . . . , gn) lift to a group cycle

37-c



The quandle structure on Conj(h) induces a quandle operation

on Z(h)\G.

(g−1
1 hg1) ∗ (g−1

2 hg2) = (g−1
2 hg2)

−1(g−1
1 hg1)(g

−1
2 hg2)

= (g1g−1
2 hg2)

−1h(g1g−1
2 hg2)

↔ Z(h)g1(g
−1
2 hg2)

Let π : G → Z(h)\G be the projection map. The quandle

operation on Z(h)\G lifts to the quandle operation on G by:

g1 • g2 := h−1g1(g
−1
2 hg2) (g1, g2 ∈ G)

This • satisfies the quandle axioms.
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The projection map π : G → Z(h)\G is a quandle homomor-

phism. Let s : Z(h)\G → G be a section of π (π ◦ s = Id).

Since s(x ∗ y) and s(x) • s(y) are in the same coset in Z(h)\G,

there exists an element c(x, y) ∈ Z(h) satisfying

s(x ∗ y) = c(x, y)s(x) • s(y)

Fact If Z(h) is an abelian group, c : X × X → Z(h) is a

quandle 2-cocycle. If the cycle c is cohomologous to zero, we

can change the section s so that s(x ∗ y) = s(x) • s(y).
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Example (dihedral group D2p, p: odd)

G = D2p = ⟨h, x|h2 = xp = hxhx = 1⟩ : dihedral group

Z(h) = {1, h}

Conj(h) = {x−ihxi|i = 0,1, . . . , p− 1} = {hx2i|i = 0, . . . , p− 1}

Conj(h) ↔ Z(h)\G s−→ G

∈ ∈ ∈
x−ihxi Z(h)xi %→ hxi

s(Z(h)xi ∗ Z(h)xj) = s(Z(h)x2j−i) = hx2j−i

= h−1(hxi)(x−jhxj) = s(Z(h)xi) • s(Z(h)xj)

Therefore c(x, y) = 0 for any x, y ∈ Rp.
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Construction of quandle cocycles

G : a group. Fix h ∈ G with hl = 1.

We assume that Z(h) is abelian and the 2-cocycle correspond-

ing to the quandle extension G→ Z(h)\G is cohomologous to

zero. (Too strong assumption?)

Let f : Gn+1 → A be a group n-cocycle in homogeneous no-

tation. Define f̃ : Gn+1→ A by

f̃(x0. . . . , xn) =
l−1∑

i=0
f(his(x0), . . . , h

is(xn))

for x0, . . . , xn ∈ Conj(h).
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Prop This satisfies the 3 conditions of quandle n-cocycle of

H∆
n (Conj(h)).

We only have to check the second property.

f̃(x0 ∗ y, . . . , xn ∗ y)

=
l−1∑

i=0
f(his(x0 ∗ y), . . . , his(xn ∗ y))

=
l−1∑

i=0
f(his(x0) • s(y), . . . , his(xn) • s(y))

=
l−1∑

i=0
f(hi−1s(x0)(s(y)

−1hs(y)), . . . , hi−1s(xn)(s(y)−1hs(y)))

=
l−1∑

i=0
f(hi−1s(x0), . . . , h

i−1s(xn)) (right invariance)

= f̃(x0, . . . , xn)
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Dual objects

Considering the dual of this construction, we obtain a group

cocycle of cyclic branched covering along K
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Presentation of cyclic branched covering space

Let mi (i = 1,2, . . . , n) be the Wirtinger generators of a knot

diagram. We denote the relations in the following form:

mi = m−εi
κi mi−1mεi

κi

where κ : {1, . . . , n}→ {1, . . . , n} and ε : {1, . . . , n}→ {±1}. Let

Cl be the manifold corresponding to the kernel of

π1(S
3 \ K)→ H1(π1(S

3 \ K)) ∼= Z→ Z/l

π1(Cl) has the following presentation.
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Generators: mi,s (i = 1,2, . . . , n, s = 0,1, . . . , l − 1)

Relations: mi,s = m−εi
κ(i),s−1mi−1,s−1mεi

κ(i),s,

m0,1 = m0,2 = . . . m0,l−1 = 1

If we add a relation m0,0 = 1, we obtain a presentation of the

cyclic branched covering Ĉl.

For a representation ρ : π1(S3 \ K)→ G, we have

ρ|π1(Cl)
(mi,s) = ρ(m0)

sρ(mi)ρ(m0)
−(s+1)

If ρ(mi)l = 1, it reduces to a representation ρ̂ : π1(Ĉl)→ G.
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Group cycles represented by the cyclic branched

covering

X = Conj(h) (∼= Z(h)\G).

Cn(G) = spanZ{(g0, . . . , gn)|gi ∈ G}

ι : C∆
n (X)→ Cn(G) : (x0, . . . , xn) %→ (s(x0), . . . , s(xn))

We can define a map ϕ : CQ
n (X;Z[X]) −→ C∆

n+1(X) and

CQ
2 (X;Z[X])

ϕ−→ C∆
3 (X) ι−→ C3(G)

ιϕ(Cs(S)) is not a group cycle in general.
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Let a be the color of m0. Then

(A ∗ a)(mi) = A(mi) ∗ a, (R ∗ a)(mi) = R(mi) ∗ a,

is also an arc coloring and a region coloring. We denote S∗a =

(A(mi) ∗ a,R ∗ a)

Thm ιϕ(Cs(S))+ιϕ(Cs(S∗a))+ιϕ(Cs(S∗a2))+· · ·+ιϕ(Cs(S∗

al−1)) is a group cycle represented by the cyclic branched

covering along the knot.
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Conclusion

By Eisermann’s work, the quandle cocycle invariant associated

to a cocycle of H2
Q(X;A) essentially comes from the monodor-

omies along the longitude.

On the other hand, the quandle cocycle invariant associated

to a cocycle of H2
Q(X; Func(X, A)) (= H2

Q(X;A)X) is closely

related to representations of the cyclic branched covering.
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