Quandle cocycles from group cocycles

KABAYA，Yuichi（蒲谷 祐一）
（Osaka City University
Advanced Mathematical Institute（OCAMI））

Kyoto University，15：40－16：30 June 2nd 2010

Introduction

X : a quandle (an algebraic object)

For a knot diagram D, we can color the arcs of D by X. This gives a cycle in some homology theory: quandle homology theory.

If we have a cocycle of X, we obtain an invariant of knots by evaluation of cycles by the cocycle. This is called cocycle invariant.

Introduction

Problem: How can we find quandle cocycles?
Can we construct quandle cocycle of X from a group cocycle of $\operatorname{Aut}(X)$ or other group related to X ?

I will show a construction of a quandle cocycle from a group cocycle. Then the geometric meaning of the cocycle invariant for the cocycle obtained from our construction.

Quandle

The definition of quandles was introduced by Joyce in 1982.
A quandle X is a set with a binary operation $*: X \times X \rightarrow X$ satisfying

1. $x * x=x$ for any $x \in X$,
2. the map $* y: X \rightarrow X: x \mapsto x * y$ is bijective for any y,
3. $(x * y) * z=(x * z) *(y * z)$ for any $x, y, z \in X$.

Example

$G:$ a group, $\quad S \subset G$: a subset closed under conjugation.
S has a quandle structure by conjugation $x * y=y^{-1} x y$.

$$
(x * y) * z=z^{-1} y^{-1} x y z=\left(z^{-1} y^{-1} z\right)\left(z^{-1} x z\right)\left(z^{-1} y z\right)=(x * z) *(y * z)
$$

Relation with knot theory

Assign an element of a quandle X for each arc of a knot diagram satisfying the following relation at each crossing. Then the axioms correspond to the Reidemeister moves:

Relation with knot theory

Quandle homology

(Carter-Jelsovsky-Kamada-LangfordSaito, 2003)

For a quandle X, define the group G_{X} by $\left\langle x \in X \mid x * y=y^{-1} x y\right\rangle$.
This is called the associated group of X.

Let $C_{n}^{R}(X)=\operatorname{span}_{\mathbb{Z}\left[G_{X}\right]}\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in X\right\}$. Define the boundary operator $\partial: C_{n}^{R}(X) \rightarrow C_{n-1}^{R}(X)$ by

$$
\begin{aligned}
\partial\left(x_{1}, \ldots, x_{n}\right)= & \sum_{i=1}^{n}(-1)^{i}\left\{\left(x_{1}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right)\right. \\
& \left.-x_{i}\left(x_{1} * x_{i}, \ldots, x_{i-1} * x_{i}, x_{i+1}, \ldots, x_{n}\right)\right\}
\end{aligned}
$$

Let M be a right $\mathbb{Z}\left[G_{X}\right]$-module. The homology group of $M \otimes_{\mathbb{Z}\left[G_{X}\right]} C_{n}^{R}(X)$ is called the rack homology $H_{n}^{R}(X ; M)$.

Factoring degenerate chains, we also define the quandle homology $H_{n}^{Q}(X ; M)$.

Let

$$
\begin{aligned}
& C_{n}^{D}(X)=\operatorname{span}_{\mathbb{Z}\left[G_{X}\right]}\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in X\right. \\
&\left.x_{i}=x_{i+1}(\text { for some } i)\right\}
\end{aligned}
$$

This is a subcomplex of $C_{n}^{R}(X)$. Let $C_{n}^{Q}(X)$ be the quotient $C_{n}^{R}(X) / C_{n}^{D}(X)$. The homology of $M \otimes_{\mathbb{Z}\left[G_{X}\right]} C_{n}^{Q}(X)$ is called the quandle homology $H_{n}^{Q}(X ; M)$

Geometric interpretation $\quad C_{2}^{R}(X) \rightarrow C_{1}^{R}(X)$

$$
\begin{gathered}
-g(y)+g x(y) \\
+g(x)-g y(x * y)
\end{gathered}
$$

$$
\begin{aligned}
\sum_{i=1}^{n}(-1)^{i}\{ & \left(x_{1}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right) \\
& \left.\quad-x_{i}\left(x_{1} * x_{i}, \ldots, x_{i-1} * x_{i}, x_{i+1}, \ldots, x_{n}\right)\right\}
\end{aligned}
$$

Geometric interpretation $\quad C_{3}^{R}(X) \rightarrow C_{2}^{R}(X)$

A naive relationship with group homology

We can construct a map from the rack homology $H_{n}^{R}(X ; A)$ to the group homology $H_{n}\left(G_{X} ; A\right)$ by dividing an n-cube into n ! simplices.

For example, when $n=3$,

$$
\begin{aligned}
(x, y, z) & \mapsto[x|y| z]-[x|z| y * z]+[y|z|(x * y) * z] \\
& -[y|x * y| z]+[z|x * z| y * z]-[z|y * z|(x * y) * z]
\end{aligned}
$$

We will give another relationship between quandle homology and group homology.

Before mentioning the relation, we introduce the cycle associated to a knot diagram with coloring.

Arc coloring

Let D be a diagram of a knot K.

We call a map $\mathcal{A}:\{\operatorname{arcs}$ of $D\} \rightarrow X$ arc coloring if it satisfies the following relation at each crossing.

$$
x, y \text { and } x * y \in X
$$

Example: Arc coloring

$$
\begin{aligned}
& c * a=d \\
& a * c=b \\
& a * b=d \\
& c * d=b
\end{aligned}
$$

Example: Arc coloring

$$
\begin{aligned}
& c * a=d \\
& a * c=b \\
& a * b=d \\
& c * d=b
\end{aligned}
$$

Example: Arc coloring

$$
\begin{aligned}
& c * a=d \\
& a * c=b \\
& a * b=d \\
& c * d=b
\end{aligned}
$$

Example: Arc coloring

$$
\begin{aligned}
& c * a=d \\
& a * c=b \\
& a * b=d \\
& c * d=b
\end{aligned}
$$

Example: Arc coloring

$$
\begin{aligned}
& c * a=d \\
& a * c=b \\
& a * b=d \\
& c * d=b
\end{aligned}
$$

Region coloring

Let D be a diagram and \mathcal{A} be an arc coloring by X. A map $\mathcal{D}:\{r e g i o n s$ of $D\} \rightarrow X$ is called a region coloring if it satisfies the following relation:

x

We call a pair $\mathcal{S}=(\mathcal{A}, \mathcal{R})(\mathcal{A}$: arc coloring, \mathcal{R} : region coloring $)$ a shadow coloring. (The notion of region coloring is defined for any set with right $G_{X^{-}}$-action.)

Example: Shadow coloring

$$
\begin{aligned}
& r_{2} * a=r_{1}, \quad r_{3} * c=r_{2} \\
& r_{3} * a=r_{4}, \quad r_{2} * b=r_{5} \\
& r_{5} * d=r_{6}
\end{aligned}
$$

Cycles associated with quandle colorings

A quandle X itself has a right G_{X}-action defined by

$$
x *\left(x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \ldots x_{n}^{\varepsilon_{n}}\right)=\left(\ldots\left(\left(x *^{\varepsilon_{1}} x_{1}\right) *^{\varepsilon_{2}} x_{2}\right) \ldots\right) *^{\varepsilon_{n}} x_{n} .
$$

So the free abelian group $\mathbb{Z}[X]$ is a right $\mathbb{Z}\left[G_{X}\right]$-module.

Let $\mathcal{S}=(\mathcal{A}, \mathcal{R})$ be a shadow coloring by a quandle X. Assign

We define two chains associated with a shadow coloring

$$
\begin{aligned}
C_{s}(\mathcal{S}) & =\sum_{c: c r o s s i n g} \varepsilon_{c} r_{c} \otimes\left(x_{c}, y_{c}\right) \in C_{2}^{Q}(X ; \mathbb{Z}[X]) \\
C_{a}(\mathcal{A}) & =\sum_{c: \text { crossing }} \varepsilon_{c}\left(x_{c}, y_{c}\right) \in C_{2}^{Q}(X ; \mathbb{Z})
\end{aligned}
$$

We can show that $C_{s}(\mathcal{S})$ and $C_{a}(\mathcal{A})$ are cycles. Moreover the homology class $\left[C_{s}(\mathcal{S})\right.$] does not depend on the region coloring.

Eisermann showed that the cycle $\left[C_{a}\right]$ is essentially equivalent to the monodoromy along the longitude of some representation of the knot group. So we study the invariant $\left[C_{s}(\mathcal{S})\right]$.

Example: $C_{s}(\mathcal{S})$ and $C_{a}(\mathcal{A})$

$$
\begin{aligned}
& C_{s}(\mathcal{S})= \\
& \quad r_{3} \otimes(c, a)+r_{3} \otimes(a, c) \\
& \quad-r_{2} \otimes(a, b)-r_{4} \otimes(c, d) \\
& C_{a}(\mathcal{S})= \\
& \quad(c, a)+(a, c) \\
& \quad-(a, b)-(c, d)
\end{aligned}
$$

Example: $C_{s}(\mathcal{S})$ and $C_{a}(\mathcal{A})$

$$
\begin{aligned}
& C_{s}(\mathcal{S})= \\
& \quad r_{3} \otimes(c, a)+r_{3} \otimes(a, c) \\
& \quad-r_{2} \otimes(a, b)-r_{4} \otimes(c, d) \\
& C_{a}(\mathcal{S})= \\
& \quad(c, a)+(a, c) \\
& \quad-(a, b)-(c, d)
\end{aligned}
$$

Example: $C_{s}(\mathcal{S})$ and $C_{a}(\mathcal{A})$

$$
\begin{aligned}
& C_{s}(\mathcal{S})= \\
& \quad r_{3} \otimes(c, a)+r_{3} \otimes(a, c) \\
& \quad-r_{2} \otimes(a, b)-r_{4} \otimes(c, d) \\
& C_{a}(\mathcal{S})= \\
& \quad(c, a)+(a, c) \\
& \quad-(a, b)-(c, d)
\end{aligned}
$$

Example: $C_{s}(\mathcal{S})$ and $C_{a}(\mathcal{A})$

$$
\begin{aligned}
& C_{s}(\mathcal{S})= \\
& \quad r_{3} \otimes(c, a)+r_{3} \otimes(a, c) \\
& \quad-r_{2} \otimes(a, b)-r_{4} \otimes(c, d) \\
& C_{a}(\mathcal{S})= \\
& \quad(c, a)+(a, c) \\
& \quad-(a, b)-(c, d)
\end{aligned}
$$

Example: $C_{s}(\mathcal{S})$ and $C_{a}(\mathcal{A})$

$$
\begin{aligned}
& C_{s}(\mathcal{S})= \\
& \quad r_{3} \otimes(c, a)+r_{3} \otimes(a, c) \\
& \quad-r_{2} \otimes(a, b)-r_{4} \otimes(c, d) \\
& C_{a}(\mathcal{S})= \\
& \quad(c, a)+(a, c) \\
& \quad-(a, b)-(c, d)
\end{aligned}
$$

Quandle cocycle invariants

Assume $|X|<\infty$. Let A be an abelian group. For any quandle cocycle $f \in H_{Q}^{2}(X ; \operatorname{Func}(X, A))\left(\right.$ or $\left.f \in H_{Q}^{3}(X ; A)\right)$,

$$
\sum_{\mathcal{S}: \text { colorings }}\left\langle f, C_{s}(\mathcal{S})\right\rangle \in \mathbb{Z}[A]
$$

is an invariant of knots. This is called quandle cocycle invariant.

We can also define an invariant for C_{a} by using a cocycle of $H_{Q}^{2}(X ; A)$.

Simplicial quandle homology $H_{n}^{\triangle}(X)$

Let $C_{n}^{\Delta}(X)=\operatorname{span}_{\mathbb{Z}}\left\{\left(x_{0}, \ldots, x_{n}\right) \mid x_{i} \in X\right\}$. Define the boundary operator $\partial: C_{n}^{\Delta}(X) \rightarrow C_{n-1}^{\Delta}(X)$ by

$$
\partial\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n}(-1)^{i}\left(x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right)
$$

$C_{n}^{\Delta}(X)$ has a natural right action by $\mathbb{Z}\left[G_{X}\right]$. Denote the homology of $C_{n}^{\Delta}(X) \otimes_{\mathbb{Z}\left[G_{X}\right]} \mathbb{Z}$ by $H_{n}^{\Delta}(X)$. We can construct a map

$$
\varphi_{*}: H_{n}^{R}(X ; \mathbb{Z}[X]) \rightarrow H_{n+1}^{\Delta}(X)
$$

in the following way:

$$
n=2 \quad \varphi: C_{2}^{R}(X ; \mathbb{Z}[X]) \rightarrow C_{3}^{\Delta}(X) \otimes_{\mathbb{Z}\left[G_{X}\right]} \mathbb{Z}
$$

For general case, let I_{n} be the set of maps $\iota:\{1,2, \cdots, n\} \rightarrow$ $\{0,1\}$. Let $|\iota|$ denote the cardinality of the set $\{k \mid \iota(k)=$ $1,1 \leq k \leq n\}$. For $r \otimes\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in C_{n}^{R}(X ; \mathbb{Z}[X])$ and $\iota \in I_{n}$, define

$$
\begin{aligned}
r(\iota) & =r *\left(x_{1}^{\iota(1)} x_{2}^{\iota(2)} \cdots x_{n}^{\iota(n)}\right) \\
x(\iota, i) & =x_{i} *\left(x_{i+1}^{\iota(i+1)} x_{i+2}^{\iota(i+2)} \cdots x_{n}^{\iota(n)}\right)
\end{aligned}
$$

Fix $p \in X$. Define $\varphi: C_{n}^{R}(X ; \mathbb{Z}[X]) \longrightarrow C_{n+1}^{\Delta}(X) \otimes_{\mathbb{Z}\left[G_{X}\right]} \mathbb{Z}$ by

$$
\begin{aligned}
& \varphi\left(r \otimes\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right) \\
& \quad=\sum_{\iota \in I_{n}}(-1)^{|\iota|}(p, r(\iota), x(\iota, 1), x(\iota, 2), \cdots, x(\iota, n)) .
\end{aligned}
$$

Thm (Inoue-K.) $\varphi: C_{n}^{R}(X ; \mathbb{Z}[X]) \longrightarrow C_{n+1}^{\Delta}(X) \otimes_{\mathbb{Z}\left[G_{X}\right]} \mathbb{Z}$ is a chain map.

The map φ induces a homomorphism

$$
H_{n}^{R}(X ; \mathbb{Z}[X]) \rightarrow H_{n+1}^{\Delta}(X)
$$

So we can construct a quandle cocycle from a cocycle of $H_{n+1}^{\Delta}(X)$.

If we have a function f from X^{k+1} to some abelian group A satisfying

1. $\sum_{i}(-1)^{i} f\left(x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{k+1}\right)=0$,
2. $f\left(x_{0} * y, \ldots, x_{k} * y\right)=f\left(x_{0}, \ldots, x_{k}\right)$ for any y, and
3. $f\left(x_{0}, \ldots, x_{k}\right)=0$ if $x_{i}=x_{i+1}$ for some i,
then f gives a cocycle of $H_{k}^{\triangle}(X)$ and a cocycle of $H_{k-1}^{Q}(X ; \mathbb{Z}[X])$.
Moreover f can be regarded as a cocycle in $H_{Q}^{k}(X ; A)$

We will construct functions satisfying these conditions from group cocycles.

Group cocycle

Let G be a group and A be an abelian group.

A map $f: G^{n} \rightarrow A$ is called a group n-cocycle if it satisfies

$$
\begin{array}{r}
f\left(g_{2}, \ldots, g_{n+1}\right)+\sum_{i=1}^{n}(-1)^{i} f\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n+1}\right) \\
+(-1)^{n+1} f\left(g_{1}, \ldots, g_{n}\right)=0
\end{array}
$$

Define $f^{\prime}: G^{n+1} \rightarrow A$ by

$$
f^{\prime}\left(g_{0}, g_{1}, g_{2}, \ldots, g_{n}\right):=f\left(g_{0} g_{1}^{-1}, g_{1} g_{2}^{-1}, \ldots, g_{n-1} g_{n}^{-1}\right)
$$

The map f^{\prime} satisfies following properties:
(a) $\sum_{i=0}^{n+1}(-1)^{i} f^{\prime}\left(g_{0}, \ldots, \widehat{g_{i}}, \ldots, g_{n+1}\right)=0$
(b) $f^{\prime}\left(g_{0} g, \ldots, g_{n} g\right)=f^{\prime}\left(g_{0}, \ldots, g_{n}\right) \quad$ (right invariance)

Conversely, any map satisfying these two properties gives a group n-cocycle. We call this presentation of a group cocycle homogeneous presentation.

Example: Dihedral quandle

$$
\begin{gathered}
R_{p}=\{0,1, \ldots, p-1\}(p>2: \text { odd }) \text { has a quandle structure by } \\
\qquad x * y=2 y-x \text { mod } p
\end{gathered}
$$

This is called the dihedral quandle.

We will construct quandle cocycles of R_{p} from group cocycles of \mathbb{Z} / p. Regard \mathbb{Z} / p as R_{p}. Then a (normalized) group cocycle f in homogeneous notation satisfies

1. $\sum_{i}(-1)^{i} f\left(x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{k+1}\right)=0$,
2. $f\left(x_{0}, \ldots, x_{k}\right)=0$ if $x_{i}=x_{i+1}$ for some i.

So we only have to check the property:
2. $f\left(x_{0} * y, \ldots, x_{k} * y\right)=f\left(x_{0}, \ldots, x_{k}\right)$ for any y

But f does not satisfy this property in general. Let

$$
\tilde{f}\left(x_{0}, \ldots, x_{n}\right):=f\left(x_{0}, \ldots, x_{n}\right)+f\left(-x_{0}, \ldots,-x_{n}\right)
$$

Then we have

$$
\begin{aligned}
& \tilde{f}\left(x_{0} * y, \ldots, x_{n} * y\right) \\
& \quad=f\left(2 y-x_{0}, \ldots, 2 y-x_{n}\right)+f\left(2 y+x_{0}, \ldots, 2 y+x_{n}\right) \\
& \quad=f\left(-x_{0}, \ldots,-x_{n}\right)+f\left(x_{0}, \ldots, x_{n}\right) \quad \text { (right invariance) } \\
& \quad=\tilde{f}\left(x_{0}, \ldots, x_{n}\right)
\end{aligned}
$$

Therefore \tilde{f} satisfies the properties 1,2 and 3 . So we obtain
a quandle n-cocycle.

Cohomology of cyclic groups

Let $G=\mathbb{Z} / p$ be a cyclic group (p is a positive integer). The first cohomology $H^{1}(G ; \mathbb{Z} / p)$ is generated by

$$
b_{1}(x)=x
$$

and the second cohomology $H^{2}(G ; \mathbb{Z} / p)$ is generated by

$$
b_{2}(x, y)=\left\{\begin{array}{l}
1 \text { if } \bar{x}+\bar{y} \geq p \\
0 \text { otherwise }
\end{array}\right.
$$

where \bar{x} is an integer $0 \leq \bar{x}<p$ with $\bar{x} \equiv 0 \bmod p$. Moreover any element of $H^{*}(G ; \mathbb{Z} / p)$ is generated by a cup product of b_{1} 's and b_{2} 's.

Let

$$
d(x, y)= \begin{cases}1 & \text { if } \bar{x}+\bar{y}>p \\ -1 & \text { if } \bar{x}+\bar{y}<p \text { and } x y \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Prop The quandle 3-cocycle obtained from $b_{1} b_{2}$ is given by

$$
(x, y, z) \mapsto 2 z(d(y-x, z-y)+d(y-x, y-z))
$$

By computer calculation, I checked that this is 4 times the Mochizuki's 3-cocycle up to coboundary.

Next we will compute the quandle cocycle invariant of $(2, p)$ torus knot for this quandle 3-cocycle.

Quandle cycle invariant of the ($2, p$)-torus knot

For any x, y and r, the left figure is a shadow coloring of the $(2, p)$ torus knot.

Then

$$
C_{s}(\mathcal{S})=\sum_{i=0}^{p-1} r \otimes(x+i(y-x), \quad y+i(y-x))
$$

Prop The quandle cocycle invariant of the $(2, p)$-torus knot constructed from $b_{1} b_{2} \in H^{3}(G ; \mathbb{Z} / p)$ is equal to

$$
p^{2} \sum_{i=0}^{p-1} t^{-i^{2}} \in \mathbb{Z}[t] /\left(t^{p}-1\right)
$$

$\left(\mathbb{Z}[\mathbb{Z} / p] \cong \mathbb{Z}[t] /\left(t^{p}-1\right)\right)$

Remark

Let $L(p, q)$ be the lens space. The Dijkgraaf-Witten invariant of $L(p, q)$ for $G=\mathbb{Z} / p$ is equal to

$$
\sum_{i=0}^{p-1} t^{-q \cdot i^{2}} \in \mathbb{Z}[t] /\left(t^{p}-1\right)
$$

(Usually Dijkgraaf-Witten invariant is defined with values in \mathbb{C} and normalized by multiplying $\frac{1}{|G|}$. I also used different orientation convention)

Since the double branched covering of the ($2, p$)-torus knot is $L(p, 1)$, it is natural to ask a relation with quandle cocycle invariant.

General case

$G:$ a group. Fix an element $h \in G$.
$\operatorname{Conj}(h)=\left\{g^{-1} h g \mid g \in G\right\}$
$\operatorname{Conj}(h)$ has a quandle operation by $x * y=y^{-1} x y$.

Let $Z(h)=\{g \in G \mid g h=h g\}$ be the centralizer of h in G.

Lemma As a set $\operatorname{Conj}(h) \cong Z(h) \backslash G$ by

$$
g^{-1} h g \leftrightarrow Z(h) g \text { (right coset) }
$$

Idea

$$
\operatorname{Conj}(h) \quad \leftrightarrow \quad Z(h) \backslash G
$$

Idea

Conj(h)
 \leftrightarrow
 $Z(h) \backslash G$

Use for representation of π_{1}
Space which G acts on

Idea

$$
\operatorname{Conj}(h) \quad \leftrightarrow \quad Z(h) \backslash G
$$

Use for representation of π_{1}
Space which G acts on
Construct a group cycle

Idea

$\operatorname{Conj}(h) \quad \leftrightarrow \quad Z(h) \backslash G$
Use for representation of π_{1}

Space which G acts on
Construct a group cycle

From now on we study the quandle structure on $Z(h) \backslash G$ and construct a lift of $\pi: G \rightarrow Z(h) \backslash G$.

$$
\left(Z(h) g_{0}, \ldots, Z(h) g_{n}\right) \rightsquigarrow\left(g_{0}, \ldots, g_{n}\right) \quad \text { lift to a group cycle }
$$

The quandle structure on $\operatorname{Conj}(h)$ induces a quandle operation on $Z(h) \backslash G$.

$$
\begin{aligned}
\left(g_{1}^{-1} h g_{1}\right) *\left(g_{2}^{-1} h g_{2}\right) & =\left(g_{2}^{-1} h g_{2}\right)^{-1}\left(g_{1}^{-1} h g_{1}\right)\left(g_{2}^{-1} h g_{2}\right) \\
& =\left(g_{1} g_{2}^{-1} h g_{2}\right)^{-1} h\left(g_{1} g_{2}^{-1} h g_{2}\right) \\
& \leftrightarrow Z(h) g_{1}\left(g_{2}^{-1} h g_{2}\right)
\end{aligned}
$$

Let $\pi: G \rightarrow Z(h) \backslash G$ be the projection map. The quandle operation on $Z(h) \backslash G$ lifts to the quandle operation on G by:

$$
g_{1} \bullet g_{2}:=h^{-1} g_{1}\left(g_{2}^{-1} h g_{2}\right) \quad\left(g_{1}, g_{2} \in G\right)
$$

This • satisfies the quandle axioms.

The projection map $\pi: G \rightarrow Z(h) \backslash G$ is a quandle homomorphism. Let $s: Z(h) \backslash G \rightarrow G$ be a section of $\pi(\pi \circ s=\mathrm{Id})$. Since $s(x * y)$ and $s(x) \bullet s(y)$ are in the same coset in $Z(h) \backslash G$, there exists an element $c(x, y) \in Z(h)$ satisfying

$$
s(x * y)=c(x, y) s(x) \bullet s(y)
$$

Fact If $Z(h)$ is an abelian group, $c: X \times X \rightarrow Z(h)$ is a quandle 2-cocycle. If the cycle c is cohomologous to zero, we can change the section s so that $s(x * y)=s(x) \bullet s(y)$.

Example (dihedral group $D_{2 p}, p$: odd)

$$
\begin{aligned}
& G=D_{2 p}=\left\langle h, x \mid h^{2}=x^{p}=h x h x=1\right\rangle: \text { dihedral group } \\
& Z(h)=\{1, h\} \\
& \operatorname{Conj}(h)=\left\{x^{-i} h x^{i} \mid i=0,1, \ldots, p-1\right\}=\left\{h x^{2 i} \mid i=0, \ldots, p-1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\operatorname{Conj}}(h) \leftrightarrow \underset{\sim}{Z(h) \backslash G} \xrightarrow{s} \quad \underset{\sim}{G} \\
& x^{-i} h x^{i} \quad Z(h) x^{i} \quad \mapsto h x^{i} \\
& s\left(Z(h) x^{i} * Z(h) x^{j}\right)=s\left(Z(h) x^{2 j-i}\right)=h x^{2 j-i} \\
& =h^{-1}\left(h x^{i}\right)\left(x^{-j} h x^{j}\right)=s\left(Z(h) x^{i}\right) \bullet s\left(Z(h) x^{j}\right)
\end{aligned}
$$

Therefore $c(x, y)=0$ for any $x, y \in R_{p}$.

Construction of quandle cocycles

$G:$ a group. Fix $h \in G$ with $h^{l}=1$.

We assume that $Z(h)$ is abelian and the 2-cocycle corresponding to the quandle extension $G \rightarrow Z(h) \backslash G$ is cohomologous to zero.

Let $f: G^{n+1} \rightarrow A$ be a group n-cocycle in homogeneous notation. Define $\tilde{f}: G^{n+1} \rightarrow A$ by

$$
\tilde{f}\left(x_{0} \ldots, x_{n}\right)=\sum_{i=0}^{l-1} f\left(h^{i} s\left(x_{0}\right), \ldots, h^{i} s\left(x_{n}\right)\right)
$$

for $x_{0}, \ldots, x_{n} \in \operatorname{Conj}(h)$.

Construction of quandle cocycles

$G:$ a group. Fix $h \in G$ with $h^{l}=1$.

We assume that $Z(h)$ is abelian and the 2-cocycle corresponding to the quandle extension $G \rightarrow Z(h) \backslash G$ is cohomologous to zero. (Too strong assumption?)

Let $f: G^{n+1} \rightarrow A$ be a group n-cocycle in homogeneous notation. Define $\tilde{f}: G^{n+1} \rightarrow A$ by

$$
\tilde{f}\left(x_{0} \ldots, x_{n}\right)=\sum_{i=0}^{l-1} f\left(h^{i} s\left(x_{0}\right), \ldots, h^{i} s\left(x_{n}\right)\right)
$$

for $x_{0}, \ldots, x_{n} \in \operatorname{Conj}(h)$.

Prop This satisfies the 3 conditions of quandle n-cocycle of $H_{n}^{\Delta}(\operatorname{Conj}(h))$.

We only have to check the second property.

$$
\begin{aligned}
\tilde{f} & \left(x_{0} * y, \ldots, x_{n} * y\right) \\
& =\sum_{i=0}^{l-1} f\left(h^{i} s\left(x_{0} * y\right), \ldots, h^{i} s\left(x_{n} * y\right)\right) \\
& =\sum_{i=0}^{l-1} f\left(h^{i} s\left(x_{0}\right) \bullet s(y), \ldots, h^{i} s\left(x_{n}\right) \bullet s(y)\right) \\
& =\sum_{i=0}^{l-1} f\left(h^{i-1} s\left(x_{0}\right)\left(s(y)^{-1} h s(y)\right), \ldots, h^{i-1} s\left(x_{n}\right)\left(s(y)^{-1} h s(y)\right)\right) \\
& =\sum_{i=0}^{l-1} f\left(h^{i-1} s\left(x_{0}\right), \ldots, h^{i-1} s\left(x_{n}\right)\right) \quad \text { (right invariance) } \\
& =\widetilde{f}\left(x_{0}, \ldots, x_{n}\right)
\end{aligned}
$$

Dual objects

Considering the dual of this construction, we obtain a group cocycle of cyclic branched covering along K

Presentation of cyclic branched covering space

Let $m_{i}(i=1,2, \ldots, n)$ be the Wirtinger generators of a knot diagram. We denote the relations in the following form:

$$
m_{i}=m_{\kappa i}^{-\varepsilon i} m_{i-1} m_{\kappa i}^{\varepsilon i}
$$

where $\kappa:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ and $\varepsilon:\{1, \ldots, n\} \rightarrow\{ \pm 1\}$. Let C_{l} be the manifold corresponding to the kernel of

$$
\pi_{1}\left(S^{3} \backslash K\right) \rightarrow H_{1}\left(\pi_{1}\left(S^{3} \backslash K\right)\right) \cong \mathbb{Z} \rightarrow \mathbb{Z} / l
$$

$\pi_{1}\left(C_{l}\right)$ has the following presentation.

Generators: $m_{i, s} \quad(i=1,2, \ldots, n, \quad s=0,1, \ldots, l-1)$
Relations: $m_{i, s}=m_{\kappa(i), s-1}^{-\varepsilon i} m_{i-1, s-1} m_{\kappa(i), s}^{\varepsilon i}$,

$$
m_{0,1}=m_{0,2}=\ldots m_{0, l-1}=1
$$

If we add a relation $m_{0,0}=1$, we obtain a presentation of the cyclic branched covering \widehat{C}_{l}.

For a representation $\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow G$, we have

$$
\left.\rho\right|_{\pi_{1}\left(C_{l}\right)}\left(m_{i, s}\right)=\rho\left(m_{0}\right)^{s} \rho\left(m_{i}\right) \rho\left(m_{0}\right)^{-(s+1)}
$$

If $\rho\left(m_{i}\right)^{l}=1$, it reduces to a representation $\hat{\rho}: \pi_{1}\left(\widehat{C}_{l}\right) \rightarrow G$.

Group cycles represented by the cyclic branched covering

$X=\operatorname{Conj}(h) \quad(\cong Z(h) \backslash G)$.
$C_{n}(G)=\operatorname{span}_{\mathbb{Z}}\left\{\left(g_{0}, \ldots, g_{n}\right) \mid g_{i} \in G\right\}$
$\iota: C_{n}^{\Delta}(X) \rightarrow C_{n}(G):\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(s\left(x_{0}\right), \ldots, s\left(x_{n}\right)\right)$
We can define a map $\varphi: C_{n}^{Q}(X ; \mathbb{Z}[X]) \longrightarrow C_{n+1}^{\Delta}(X)$ and

$$
C_{2}^{Q}(X ; \mathbb{Z}[X]) \xrightarrow{\varphi} C_{3}^{\Delta}(X) \xrightarrow{\iota} C_{3}(G)
$$

$\iota \varphi\left(C_{s}(\mathcal{S})\right)$ is not a group cycle in general.

Let a be the color of m_{0}. Then

$$
(\mathcal{A} * a)\left(m_{i}\right)=\mathcal{A}\left(m_{i}\right) * a, \quad(\mathcal{R} * a)\left(m_{i}\right)=\mathcal{R}\left(m_{i}\right) * a
$$

is also an arc coloring and a region coloring. We denote $\mathcal{S} * a=$ $\left(\mathcal{A}\left(m_{i}\right) * a, \mathcal{R} * a\right)$

Thm $\iota \varphi\left(C_{s}(\mathcal{S})\right)+\iota \varphi\left(C_{s}(\mathcal{S} * a)\right)+\iota \varphi\left(C_{s}\left(\mathcal{S} * a^{2}\right)\right)+\cdots+\iota \varphi\left(C_{s}(\mathcal{S} *\right.$ $\left.a^{l-1}\right)$) is a group cycle represented by the cyclic branched covering along the knot.

Conclusion

By Eisermann's work, the quandle cocycle invariant associated to a cocycle of $H_{Q}^{2}(X ; A)$ essentially comes from the monodoromies along the longitude.

On the other hand, the quandle cocycle invariant associated to a cocycle of $H_{Q}^{2}(X ; \operatorname{Func}(X, A))\left(=H_{Q}^{2}(X ; A)_{X}\right)$ is closely related to representations of the cyclic branched covering.

