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Introduction

X : a quandle (an algebraic object)

For a knot diagram D, we can color the arcs of D by X. This

gives a cycle in some homology theory: quandle homology

theory.

If we have a cocycle of X, we obtain an invariant of knots

by evaluation of cycles by the cocycle. This is called cocycle

invariant.



Introduction

Problem: How can we find quandle cocycles?

Can we construct quandle cocycle of X from a group cocycle
of Aut(X) or other group related to X7

I will show a construction of a quandle cocycle from a group
cocycle. Then the geometric meaning of the cocycle invariant

for the cocycle obtained from our construction.



Quandle

The definition of quandles was introduced by Joyce in 1982.

A quandle X is a set with a binary operation * : X x X — X
satisfying
1. xxx =x for any = € X,

2. the map xy: X — X : x — x xy is bijective for any v,
3. (xxy)*xz2=(x*xz2)*x(yxz) for any z,y,z € X.

Example

G a group, S C (G : a subset closed under conju?ation.
S has a quandle structure by conjugation xxy =y~ ~xy.

(zxy) 2=z "ty loyz = " ly 1) 122) 7 yz) = (2% 2) x (y x 2)



Relation with knot theory

Assign an element of a quandle X for each
arc of a knot diagram satisfying the following
relation at each crossing. Then the axioms

correspond to the Reidemeister moves:

T X
dzxx =y
Z

(D o (11) T Ey

T * Y



Relation with knot theory

e

(III) z yxz (r*xy)xz =z yxz (z*xz2)*(y*2z2)



Quandle homology (Carter-Jelsovsky-Kamada-Langford-
Saito, 2003)
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For a quandle X, define the group Gx by (x € X|xxy =y~ “zy).

This is called the associated group of X.

Let CiH(X) = spang g, {(#1,...,2n)|z; € X}. Define the bound-
ary operator 9 : CE(X) — CIt 1 (X) by

n :
8(33‘1, < 73771) — Z (_1)1{(3717 < e 75/8\7;7 R 73377/)
1=1
— xi(T1 * Xy oo T K T, Ty 15+, Tn) )

Let M be a right Z[G x]-module. The homology group of
M ®z16, Cil(X) is called the rack homology HiI(X; M).



Factoring degenerate chains, we also define the quandle ho-

mology HZ(X; M).

Let
Cy (X) = spang g {(e1, ..., zn)|z; € X,

r; = x;41(for some 7)}.

This is a subcomplex of CL(X). Let G,?(X) be the quotient
CH(X)/CP(X). The homology of M ®zq C9(X) is called
the quandle homology Hq?(X; M)



Geometric interpretation c(x) — cfi(X)

T *y Ty gy
s,
Yy y Y Y
T g gx g
5
g(x,y)
—g(y) + gz(y)

+g9(x) — gy(z *xy)

i:l(—l)i{(:vl, ey TGy, Tn)

— (T * Ty, X1 X TG Tijg 1,05 Tn) }



Geometric interpretation c{(X) — C4(X)

((z xy) * 2)

((z*xy) * 2) ///7(/// § y;i57////
: Txz
Y * 2z i Y * 2

A —
zi z <
f z
L EY 4 z Z
. /// P Y €T *k Yy Yy
Y Yy 9y
o T
g g
T g g
Yy
g(z,y, z) .
g

9(x,y,2) — —g(y,2) + 9z(y, 2) + g9(z,2) — gy(z * y, 2)
—g(z,y) + gz(x * 2,y * 2)
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A naive relationship with group homology

(xxy)* 2z
We can construct a map from the rack L mxz
homology HI(X; A) to the group homol- LF N w
ogy Hn(Gx; A) by dividing an n-cube into =+
: : § T %y
n! simplices. S S N A \

For example, when n = 3,
(z,9,2) —[z|y|z] — [z]z]y * 2] + [y|2]|(z * y) * 2]
—[ylz * ylz] + [z|z * 2|y x 2] — [2]y x 2|(z * y) * 2]

11



We will give another relationship between quandle homology
and group homology.

Before mentioning the relation, we introduce the cycle asso-

Ciated to a knot diagram with coloring.

12



Arc coloring

Let D be a diagram of a knot K.

We call a map A : {arcs of D} — X arc coloring if it satisfies

the following relation at each crossing.

X * Y

>y x,y and xxy € X

13



Example: Arc coloring

cxa=d,
axc=>b,
axb=d,

cxd=>.
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Example: Arc coloring

AN

cxa=d,
axc=>b,
axb=d,

cxd=>.
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Example: Arc coloring

cxa=d,
a* c=b,
axb=d,

cxd=>.

15-a



Example: Arc coloring

cxa=d,
axc=>b,
a*xb=d,

cxd=>b.

15-b



Example: Arc coloring

cxa=d,
axc=>b,
axb=d,

c x d=b.

15-c



Region coloring

Let D be a diagram and A be an arc coloring by X. A map

D : {regions of D} — X is called a region coloring if it satisfies

the following relation:

dh >y x,y and xxy € X

We call a pair S = (A, R) (A: arc coloring, R: region coloring)
a shadow coloring. (The notion of region coloring is defined

for any set with right G x-action.)

16



Example: Shadow coloring

71
d
a
3
rTo*a —Tq,
T2 Ta
r3*a =Ty
b C ’
s T5>l<d:T6,

e

r3 *xC = T9,

T2*62T5,

17



Cycles associated with quandle colorings

A quandle X itself has a right G x-action defined by
z* (r7tr? .. 25) = (. ((@ L 2q) ¥%2 25) .. L) 0 .

So the free abelian group Z[X] is a right Z[G x]-module.

Let S = (A, R) be a shadow coloring by a quandle X. Assign

+r® (x,y) for and —r® (x,y) for

18



We define two chains associated with a shadow coloring

Cs(S) = 3 eere® (we,ye) € CY(X; Z[X])
c.Crossing

CalA) = S eclae ye) € CE(X; 7).
c.Crossing

We can show that Cs(S) and Cy(A) are cycles. Moreover
the homology class [Cs(S)] does not depend on the region

coloring.

Eisermann showed that the cycle [Cy] is essentially equivalent
to the monodoromy along the longitude of some representa-

tion of the knot group. So we study the invariant [Cs(S)].

19



Example:

r1

2

Cs(S) and

r3

Ca(A)

Cs(S) =
r3® (c,a) +r3® (a,c)
—ro® (a,b) —ra® (c,d)
Ca(S) =
(¢,a) + (a,c)
— (a,b) — (c,d)
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Example: Cs(S) and Cy(A)

r1

! r3 ® (c,a) + 13 ® (a, )

—ro® (a,b) —ra4 ® (c,d)
b C Cu(S) =
rs
(¢,a) + (a,c)
— (a,b) — (c,d)

%% . o=
2 T4

r

20-a



Example: Cs(S) and

r1

Ca(A)

Cs(S) =
r3 ® (c,a)+r3 ® (a,c)
—12® (a,b) —r4 ® (¢, d)
Ca(S) =
(c,a)+(a,c)
— (a,b) — (¢, d)

20-b



Example: Cs(S) and Cy(A)

r1

Cs(S) =
r3® (c,a) + r3® (a,c)
—ro® (a,b) — 14 ® (¢, d)
Ca(S) =
(c,a) + (a,c)
—(a,b) — (¢,d)

20-c



Example:

Cs(S) and

Ca(A)

Cs(S) =
r3 ® (c,a) + 13 ® (a,c)
—7r5® (a,b)—ra ® (c,d)
Ca(S) =
(c,a) + (a,c)
— (a,b)—(c, d)

20-d



Quandle cocycle invariants

Assume | X| < co. Let A be an abelian group. For any quandle
cocycle f € HH(X; Func(X, A)) (or f € HH(X; A) ),

S:colorings
IS an invariant of knots. This is called quandle cocycle invari-

ant.

We can also define an invariant for C, by using a cocycle of

HE(X; A).

21



Simplicial quandle homology H2(X)

Let C2(X) = spany{(zgq,...,zn)|z; € X}. Define the boundary
operator 9 : CA(X) — C2 {(X) by

n .
Nxg,...,xn) = > (—1)(zqg,..., %5, ..., Tn).
1=0

CA(X) has a natural right action by Z[Gx]. Denote the ho-
mology of C&(X) R7[G <] L by HA(X). We can construct a

map
ot HE(X, ZIX]) — HEy 1 (X)

n

in the following way:

22



n=2 o 1 CH(X,Z[X]) — C5(X) ®z164 L

r*(xy) xT*vy r*(xy) xT*vy
r kX
e (o) /
p p
e Ty
re(ey)fl e .
p/// —~
J 7y
r %k QX x r

(p,?“,a:‘,y) T (p,"“*CU,ZU,y)
—(p,rxy,x*xy,y) + (p,r*(zy),z*y,y)

23



For general case, let I, be the set of maps ¢ : {1,2,--- ,n} —
{0,1}. Let || denote the cardinality of the set {k | (k) =
1,1 < k <n}. For r® (z1,20, - ,zn) € CE(X:Z[X]) and

L € I, define
r(0) = rx (24?2t
2(1,8) = @ (e (T U2 )y
Fix p e X. Define ¢ : C;HX; Z[X]) — Ci1(X) ®zi6,] Z by
o(r ® (z1,z2, - ,n))
= Y (DM@, r@), 2, 1),2(,2), -+, 2(s, n)).

LE Iy
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Thm (Inoue-K.) ¢ : C/HX; Z[X]) — Ci1(X) ®zi6 4] Z

IS a chain map.

The map ¢ induces a homomorphism
HE(X; Z[X]) — H 1 (X).

So we can construct a quandle cocycle from a cocycle of
A
Hn+1(X).

25



If we have a function f from X*T1 to some abelian group A

satisfying

1. ZZ(_l)Zf(mOa s 7@7’ .- 7:Uki—l-1) — Or
2. fleo*xy,...,zxy) = f(xg,...,xr) fOr any y, and
3. f(:I?O, e ,xk) =0 if x; = Ti4+1 for some 1z,

then f gives a cocycle of HkA(X) and a cocycle of H,?_l(X; Z1X]).

Moreover f can be regarded as a cocycle in Hg(X;A)

We will construct functions satisfying these conditions from

group cocycles.

26



Group cocycle
Let G be a group and A be an abelian group.

A map f . G" — A is called a group n-cocycle if it satisfies

n )
f(92, .- 9pn+1) + .Zl(—l)zf(gb o3 9iGi41s - > Gnt-1)
1=

+(=1)"t1f(g1,...,9n) = 0.

Define f/: G"T1 = A by

. —1 —1 —1
£'(90,91,92,---,9n) = f(9097 » 9195 ~»-->In—19n ")

27



The map f’ satisfies following properties:

n+1
(a) Z ( 1)f(907'°'7§27"'7gn—|—1>20

(b) f’(gog, .. gng) = f'(90,---,9n)  (right invariance)

Conversely, any map satisfying these two properties gives a
group n-cocycle. We call this presentation of a group cocycle

homogeneous presentation.

28



Example: Dihedral quandle

Ry, =1410,1,...,p—1} (p > 2: odd) has a quandle structure by
rxy=2y—x mModp

This is called the dihedral quandle.

We will construct quandle cocycles of R, from group cocycles
of Z/p. Regard Z/p as Rp. Then a (normalized) group cocycle

f in homogeneous notation satisfies

1. ZZ(_l)Zf(w(% <o 7@7 <o 7$k7+1) — Ov
3. f(zg,...,x;) =0 if x; = z;4 1 for some 1.

29



So we only have to check the property:

2. f(eo*y,...,zp*xy) = f(xo,...,xr) fOr any y
But f does not satisfy this property in general. Let

f(x()a"'vxn) L= f(xOW"axn)_I_f(_x()v"'a_xn)

Then we have
flzo*xy,...,Tn*y)
= f(2y —z0,---,2y —zn) + f(Ry + =0, ..., 2y + xn)
= f(—zg9,...,—xn) + f(xo,...,zn) (right invariance)
= f(xq,...,xn)

Therefore f satisfies the properties 1, 2 and 3. So we obtain

a quandle n-cocycle.
30



Cohomology of cyclic groups

Let G = Z/p be a cyclic group (p is a positive integer). The
first cohomology H1(G;Z/p) is generated by

bi(z) =«

and the second cohomology HQ(G;Z/p) is generated by

1 ifxz+y>p
ba(@,y) = { 0 otherwise

where x is an integer 0 < x < p with x =0 mod p. Moreover

any element of H*(G;Z/p) is generated by a cup product of

b1's and b>'s.

31



Let

d(z,y) = |

(1
—1
O

\

ifr4+vy>p
ifx4+y <pand zy =0
otherwise

Prop The quandle 3-cocycle obtained from b1b> is given by

(,y,2) — 2z(d(y —z,z2 —y) +d(y — =,y — 2))

By computer calculation, I checked that this is 4 times the

Mochizuki's 3-cocycle up to coboundary.

Next we will compute the quandle cocycle invariant of (2,p)-

torus knot for this quandle 3-cocycle.
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Quandle cycle invariant of the (2,p)-torus knot

¢

For any z, y and r, the left figure

3y — 2z < ” is a shadow coloring of the (2, p)-
torus knot.
2y —x x Y
2 —
Then

1
Cs(S) = X 19 G +ily=2), y+ily—)

33



Prop The quandle cocycle invariant of the (2,p)-torus knot

constructed from bibo € H3(G: Z/p) is equal to

2]?—1 5
pe >t eZ[t]/(tP —1).
i=0

( Z|Z/p] = Z[t] /(P — 1) )

34



Remark

Let L(p,q) be the lens space. The Dijkgraaf-Witten invariant
of L(p,q) for G = Z/p is equal to

p_l D

St e Z[t] /(P — 1)

i=0
(Usually Dijkgraaf-Witten invariant is defined with values in
C and normalized by multiplying |—c1;| I also used different

orientation convention)

Since the double branched covering of the (2,p)-torus knot
is L(p,1), it is natural to ask a relation with quandle cocycle

invariant.
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General case

G a group. Fix an element h € G.

Conj(h) = {g~thglg € G}
Conj(h) has a quandle operation by zxy = vy~ lzy.
Let Z(h) = {g € G|gh = hg} be the centralizer of h in G.

Lemma As a set Conj(h) = Z(h)\G by

g_lhg — Z(h)g (right coset)

36



Idea

Conj(h)

Z(M\G

37



Idea
Conj(h)

Use for representation of my

Z(M\G

Space which G acts on

37-a



Idea
Conj(h) — Z(h)\G
Use for representation of my Space which G acts on

Construct a group cycle

37-b



Idea
Conj(h) — Z(h)\G
Use for representation of my Space which G acts on

Construct a group cycle

From now on we study the quandle structure on Z(h)\G and
construct a lift of 7 : G — Z(h)\G.

(Z(h)go, ..., Z(h)gn) ~ (90,...,9n) lift to a group cycle

37-C



The quandle structure on Conj(h) induces a quandle operation
on Z(h)\G.

(91 hg1) * (95 hg2) = (95 "hg2) (91 "hg1) (g5 Thgo)
= (9195 "hg2) " *h(g195 "hgo)
— Z(h)g1(g5 "hg2)
Let 7 : G — Z(h)\G be the projection map. The quandle
operation on Z(h)\G lifts to the quandle operation on G by:

g1 g2 :=h"1tg1(95 hgo) (91,92 € G)

T his e satisfies the quandle axioms.
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The projection map n : G — Z(h)\G is a quandle homomor-
phism. Let s : Z(h)\G — G be a section of w (7w os = Id).
Since s(xxy) and s(xz) e s(y) are in the same coset in Z(h)\G,

there exists an element c(z,y) € Z(h) satisfying

s(zxy) = c(z,y)s(z) o s(y)

Fact If Z(h) is an abelian group, ¢ : X x X — Z(h) is a
quandle 2-cocycle. If the cycle ¢ is cohomologous to zero, we

can change the section s so that s(x xy) = s(x) e s(y).

39



Example (dihedral group D,,, p: odd)
G = D5, = (h,x|h? = 2P = hxhz = 1) : dihedral group
Z(h) ={1,h}
Conj(h) = {z " tha’li =0,1,...,p— 1} = {ha?|i=0,...,p— 1}
Conj(h) < Z(hR\G = G
N, W N,
' ha Z(h)x* +—  hat
s(Z(h)x' x Z(h)z?) = s(Z(h)x2 ™) = ha?l ™"
= h Y ha)) (z77ha?) = s(Z(h)z") e s(Z(h)z))
Therefore c(x,y) = 0 for any z,y € Rp.

40



Construction of quandle cocycles
G : agroup. Fix he G with Rt =1.

We assume that Z(h) is abelian and the 2-cocycle correspond-
ing to the quandle extension G — Z(h)\G is cohomologous to

ZEro.

Let f: G" Tl 5 A be a group m-cocycle in homogeneous no-
tation. Define f:G"T1 — A by

[—1 . .
flzg....,zn) = ';o f(h's(xg),...,h's(xn))

for xg,...,xzn € Conj(h).
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Construction of quandle cocycles
G : agroup. Fix he G with Rt =1.

We assume that Z(h) is abelian and the 2-cocycle correspond-
ing to the quandle extension G — Z(h)\G is cohomologous to

zero. (Too strong assumption?)

Let f: G" Tl 5 A be a group m-cocycle in homogeneous no-
tation. Define f:G"T1 — A by

[—1 . .
flzg....,zn) = ';o f(h's(xg),...,h's(xn))

for xg,...,xn € Conj(h).

41-23



Prop T his satisfies the 3 conditions of quandle n-cocycle of
HA(Conj(h)).

We only have to check the second property.
flro*y, ..., zn*y)

[—1 : ‘
— ‘;O f(h's(xzg*y),...,h's(zn *y))

[—1 . .
= ';o f(h's(xg) @ s(y),...,h's(xn) @ s(y))

-1 .
;o F(h (@) (s(y) " ths(y), ... b s(@n) (s(y) "M hs(y)))

-1 | .
Y F(Wts(zg),. ..,k ts(zn))  (right invariance)
i=0

f(zg, ..., zn)
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Dual objects

Considering the dual of this construction, we obtain a group

cocycle of cyclic branched covering along K

43



Presentation of cyclic branched covering space

Let m; (1 = 1,2,...,n) be the Wirtinger generators of a knot

diagram. We denote the relations in the following form:
£l

— €l
m; = m,; M;_1M;;

where k : {1,...,n} —-{1,...,n}tand e :{1,...,n} — {£1}. Let

C; be the manifold corresponding to the kernel of
11(S3\ K) — Hi(m1(S3\ K)) 2 Z — Z/I

w1(C;) has the following presentation.
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Generators: m; . (1=1,2,....,n, s=0,1,...,1—1)

Y

: : — 0y —E )
Relations: m; s = My (i) s—1Mi—1,s— 1M (4) s>

mo1 =mg2=...mg;-1 =1
If we add a relation mgp o = 1, we obtain a presentation of the

cyclic branched covering C;.

For a representation p: 71(S3\ K) — G, we have

plrs (0 (Mis) = p(mg)*p(m;)p(mg) ~ 5+

If p(m;)! = 1, it reduces to a representation p: m1(C}) — G.
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Group cycles represented by the cyclic branched

covering

X = Conj(h) (2 Z(W\G).

Cn(G) = spanz{(go;---,9n)lg; € G}

L CA(X) — Cu(G) : (20, .., zn) — (5(x0),...,s(zn))

We can define a map ¢ : C (X;Z[X]) — C +1(X) and
C5(X;Z[X]) £ C5 (X) - C5(G)

Lpo(Cs(8S)) is not a group cycle in general.
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Let a be the color of mg. Then
(Axa)(m;) = A(m;) xa, (R=*a)(m;) =R(my) *a,
IS also an arc coloring and a region coloring. We denote Sxa =

(A(m;) *a, R *a)

Thm 1o(Cs(S))+1o(Cs(Sxa))+1p(Cs(Sxa?))+- - -4 1p(Cs(Sx
al—l)) is a group cycle represented by the cyclic branched

covering along the knot.
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Conclusion

By Eisermann’s work, the quandle cocycle invariant associated
to a cocycle of HC%(X; A) essentially comes from the monodor-

omies along the longitude.
On the other hand, the quandle cocycle invariant associated

to a cocycle of HE(X;Func(X,A)) (= H5(X; A)x) is closely

related to representations of the cyclic branched covering.
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