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Introduction

PSL(2, C) = SL(2, C)/{±I} is

• Isom+(H3) (orientation preserving isometries),

• the group of conformal transformations of CP1.

So PSL(2, C)-representations are important in the study of

• 3-dimensional hyperbolic geometry (and topology),

• complex projective structure (CP1-structure) on surfaces

• Teichmüller spaces (Isom+(H2) = PSL(2, R) ⊂ PSL(2, C) )
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Introduction

We study PSL(2, C)-representations of 2- and 3-manifolds us-

ing ideal triangulations.

In 3-dim case, ideal triangulations are useful to study

• existence of hyperbolic structures,

• hyperbolic Dehn fillings,

• limits of representations (ideal points).

In 2-dim case, ideal triangulations are used to study Teichm̈uller

spaces (cell decomposition, etc.)
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Introduction

We will construct a parametrization of PSL(2, C)-representations

of surface groups using ideal triangulation, (which is different

from Penner’s work.)

Our parametrization is an analogue of the (complex) Fenchel-

Nielsen coordinates using ideal triangulations. The construc-

tion is quite elementary. It is easy to give explicit matrix

generators. It works for closed surfaces.
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PSL(2, C)

CP1 = C ∪ {∞}

H3 = {(x, y, t)|t > 0} (metric : dx2+dy2+dt2

t2
)

H3 = H3 ∪ CP1 and ∂H3 = CP1

SL(2, C) =

⎧
⎨

⎩

⎛

⎝a b
c d

⎞

⎠ |a, b, c, d ∈ C, ad− bc = 1

⎫
⎬

⎭

PSL(2, C) = SL(2, C)/{±I}

PSL(2, C) acts on CP1 by the linear fractional transformation:
⎛

⎝a b
c d

⎞

⎠ · t =
at + b

ct + d
(t ∈ CP1)

This extends to an isometry on H3 and Isom+(H3) ∼= PSL(2, C).
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PSL(2, C)

Fact There exists a unique element which sends any distinct

three points of CP1 to other distinct three points.

For example, the map which sends (x, y, z) to (0,∞,1) is given

by

1
√
−(x− y)(y − z)(z − x)

⎛

⎝(z − y) −x(z − y)
(z − x) −y(z − x)

⎞

⎠ .

(The square root is well defined up to sign. Usually convenient

to use PGL(2, C) instead of PSL(2, C).)
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Actually, the matrix which sends (x1, x2, x3) to (x′1, x′2, x′3) is

1
√

(x1 − x2)(x2 − x3)(x3 − x1)(x′1 − x′2)(x
′
2 − x′3)(x

′
3 − x′1)

(
a11 a12
a21 a22

)

where
a11 = x1x′1(x

′
2 − x′3) + x2x′2(x

′
3 − x′1) + x3x′3(x

′
1 − x′2),

a12 = x1x2x′3(x
′
1 − x′2) + x2x3x′1(x

′
2 − x′3) + x3x1x′2(x

′
3 − x′1),

a21 = x1(x
′
2 − x′3) + x2(x

′
3 − x′1) + x3(x

′
1 − x′2),

a22 = x1x′1(x2 − x3) + x2x′2(x3 − x1) + x3x′3(x1 − x2).
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Set of PSL(2, C)-representations

M : manifold (we are interested in dimM = 2 or 3.)

R(M) = Hom(π1(M),PSL(2, C))

PSL(2, C) acts on R(M) by ρ (→ g−1ρg (ρ ∈ R(M), g ∈ PSL(2, C)).

X(M) = R(M)/conj. (quotient in algebraic sense)

A representation ρ : π1(M) → PSL(2, C) is called reducible if

ρ(π1(M)) fixes a point of CP1.

Restricted to irreducible representations, X(M) is nothing but

the usual quotient of R(M) by the action of PSL(2, C). X(M)

is called the character variety.
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Usually the structure of X(M) is complicated. A parametriza-

tion using an ideal triangulation is usually simpler.

E.g. let K be the figure eight

knot, then π1(S3 −K) has a com-

plicated presentation:

π1(S
3 −K) ∼= ⟨x1, x2|x−1

2 x1x2x−1
1 x2x1x−1

2 x−1
1 x2x−1

1 = 1⟩.

But X(M) is parametrized by the variety

{(x, y) ∈ (C∗)2|xy(1− x)(1− y) = 1}.

using an ideal triangulation.
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Ideal tetrahedra

An ideal tetrahedron is the convex hull of distinct 4 points

of CP1 in H3. Let z0, z1, z2, z3 be the vertices of an ideal

tetrahedron. The ideal tetrahedron is parametrized by the

cross ratio

[z0 : z1 : z2 : z3] =
z3 − z0
z3 − z1

·
z2 − z1
z2 − z0

∈ (C− {0,1}).

The cross ratio is invariant under the action of PSL(2, C).

([gz0 : gz1 : gz2 : gz3] = [z0 : z1 : z2 : z3] for any g ∈ PSL(2, C))
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Meaning of Cross ratio
Denote the edge spanned by zi and zj

by [zizj]. Define the complex parameter

of the edge [zizj] by the cross ratio

[zi : zj : zk : zl]

where (i, j, k, l) is an even permutation

of (0,1,2,3).

[0 :∞ : 1 : z] = [1 : z : 0 :∞] = z

[1 :∞ : z : 0] = [z : 0 : 1 :∞] =
1

1− z

[z :∞ : 0 : 1] = [0 : 1 : z :∞] = 1−
1

z

1
1−z

z1 =∞

z

1− 1
z

z2 = 1

z3 = zz0 = 0

z1− 1
z

The complex parameter of [zizj] is well-defined and the oppo-

site edge has same parameter.
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The cross ratio is interpreted as

the square of the eigenvalue of the

matrix which sends z2 to z3 fixing

[z0z1]. The matrix

1− 1
e2

1
1−e2

z1

e2

z0

g

z2

z3 = gz2

g =

⎛

⎝z1 z0
1 1

⎞

⎠

⎛

⎝e 0
0 e−1

⎞

⎠

⎛

⎝z1 z0
1 1

⎞

⎠
−1

∼
⎛

⎝ez1 − e−1z0 −(e− e−1)z0z1
e− e−1 −ez0 + e−1z1

⎞

⎠ .

sends z2 to z3, then e2 = [z0 : z1 : z2 : z3].

(To fix a parametrization of e, we assume that z0 is the re-

pelling fixed point and z1 is the attractive fixed point when

|e| > 1. )
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Ideal triangulation (3-dim)

M : a compact 3-manifold (∂M ̸= ∅)

∂M

M

Def A (topological) ideal triangulation of M is a cell complex

T obtained from gluing tetrahedra along their faces so that

T −N(T (0)) is homeomorphic to M .

We call a tetrahedron with 4 vertices deleted ideal tetrahedron.
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Figure eight knot complement

←− ×2

K ⊂ S3 : the figure eight knot.

S3 −K is decomposed into two ideal tetrahedra.

14



Developing map

M̃ : the universal cover of M

We will construct an equivariant map M̃ → H3.

(⇒ ρ : π1(M)→ PSL(2, C))

T = ∆(z1)∪· · ·∪∆(zn) : ideal triangulation of M with complex

parameters zi.

Develop T in H3 according with their complex parameters. We

obtain a map from the universal cover of T − T (1) to H3.

To obtain a map from the universal cover M̃ , which is home-

omorphic to the universal cover of T − N(T (0)), we have to

impose the gluing equation around each 1-simplex of T .
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Around a 1-simplex of T ,

there are some ideal tetrahedra

parametrized by wi. To extends

the map, we have to make sure

that the product of wi’s is equal

to 1.

w1w2w3w4w5

1

w1w2w3w4w5w6

w1w2 w1

w1w2w3w4

w1w2w3w4w5w6w7

w1w2w3

Since wi is one of zk,
1

1−zk
or 1− 1

zk
,

n∏

i=1
z
pji
i

⎛

⎝ 1

1− zi

⎞

⎠
p′ji

⎛

⎝1−
1

zi

⎞

⎠
p′′ji

= ±
∏

i=1
z
r′ji
i (1− zi)

r′′ji = 1.

(for each 1-simplex indexed by j.)

We call these equations gluing equations.
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Let
D(M, T ) = {(z1, . . . , zn) ∈ (C− {0,1})n

| ±
∏

i=1
z
r′ji
i (1− zi)

r′′ji = 1 (∀j)}.

We have a developing map D : M̃ → H3 for an element of

D(M). For γ ∈ π1(M), there exists a unique element ρ(γ) ∈

PSL(2, C) such that D(γp) = ρ(γ)D(p) for any p ∈ M̃ . Then

ρ is a homomorphism π1(M)→ PSL(2, C), which is called the

holonomy representation of D.

If we change the position of an ideal tetrahedron in H3, we

obtain a conjugate representation. So we obtain an algebraic

map

D(M)→ X(M)
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Example: Figure eight knot complement

Span three truncated triangles in S3 −N(K).

x1

x3

x2

Cut S3−N(K) along these triangles. We obtain a polyhedron.
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Example: Figure eight knot complement

The polyhedron decomposed into to ideal tetrahedra. Assign

complex parameters x and y.

x1

x3

x2

ρ(x1)

x

xy

∞

10

ρ(x1) =
±1

√
y(1− x)

⎛

⎝1 0
1 y(1− x)

⎞

⎠ ,
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Example: Figure eight knot complement

The polyhedron decomposed into to ideal tetrahedra. Assign

complex parameters x and y.

x2x1

x3

∞

1

x

ρ(x1)

0
xy

ρ(x1) =
±1

√
y(1− x)

⎛

⎝1 0
1 y(1− x)

⎞

⎠ ,

19-a



Example: Figure eight knot complement

The polyhedron decomposed into to ideal tetrahedra. Assign

complex parameters x and y.

x2x1

x3

xy

x

∞

ρ(x2)

0 1

ρ(x2) =
±1

√
x(1− y)

⎛

⎝1 −xy
0 x(1− y)

⎞

⎠ .
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Example: Figure eight knot complement

The polyhedron decomposed into to ideal tetrahedra. Assign

complex parameters x and y.

x2x1

x3

10

x

ρ(x3)

xy

∞

ρ(x3) =
±1

√
xy(1− x)(1− y)

⎛

⎝ 0 (x− 1)xy
1− y xy − 1

⎞

⎠ .
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Example: Figure eight knot complement

x2

x1
x3

x1

x3

x2

x−1
2 · x1 · x2 · x−1

1 · x−1
3 = 1 : the relation at the single arrow

y · (1− 1
x) · (xy) · (1− 1

y) · x = 1 : the gluing equation

(Simplified to xy(1− x)(1− y) = 1.)

Similarly the gluing equation at the double arrow is

xy(1− x)(1− y) = 1.
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Example: Figure eight knot complement

∂(S3−N(K)) inherits a triangulation from the truncated ver-

tices of T .

x
y

x
y

y

x
y

x
y′′

x′x′

y′′

y′′

y′′ y′ y′y′ y′

x′′x′ x′′

x′′ x′′

x′

x2

x−1
1 x−1

3 x−1
3 x−1

2 x3

(x′ = 1
1−x, x′′ = 1− 1

x, y′ = 1
1−y and y′′ = 1− 1

y .)

Let

M =
1

x

1

1− y
, LM−2 =

1

x

y − 1

y

x

x− 1
y
1

x

y − 1

y

x

x− 1
y.

(M =
1

x(1− y)
, L =

1

x2(1− x)2
.)
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Example: Figure eight knot complement

Then the restriction of ρ to ∂M is given by

ρ(x2) =
(√

M ∗
0 1/

√
M

)

, ρ(x−1
1 x−2

3 x−1
2 x3) =

(√
LM−2 ∗
0 1/

√
LM−2

)

Here m = x2 and lm−2 = x−1
1 x−2

3 x−1
2 x3 generate a boundary

subgroup. Since the boundary subgroup fixes a point of CP1,

the restriction is reducible. Therefore the restriction to ∂M is

quite tractable:

ρ(mplq) =

⎛

⎝

√
MpLq ∗
0 1/

√
M−pL−q

⎞

⎠ .

(Useful for hyperbolic Dehn fillings, etc.)
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In summary,

Thm Let M be a compact 3-manifold and T be an ideal

triangulation of M . There exists an algebraic map D(M, T )→

X(M). The restriction of the representation to any boundary

subgroup is reducible.

Remark • When ∂M consists of tori, usually we obtain all

“generic” representations since π1(∂M) is abelian.

• If Im(zi) > 0, there exists an incomplete hyperbolic metric

on Int(M). If furthermore L = 1 and M = 1, there exists

a complete hyperbolic metric.
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Surface group representations

We apply these techniques to surface group representations.

Strategy: Decompose the surface into three holed spheres

(pairs of pants). Then parametrize the representations of pairs

of pants and glue them along common curves using developing

maps.
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Pants decomposition

Let S be a surface of genus g (g > 1). A pants decomposition

C is a disjoint union of s.c.c. such that S − C is a collection

of three holed spheres (pairs of pants).

The number of simple closed curves of C

is equal to 3g − 3 and S − C consists of

2g − 2 pairs of pants .

−→c 1

−→c 3
−→c 2

We assume that each simple closed curve is oriented (denote

as −→c to emphasize). (C = −→c 1 ∪ · · · ∪ −→c 3g−3)
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Parametrizations of pairs of pants

We parametrize the irreducible representations of a pair of

pants P .

Let ∂P = −→c 1∪−→c 2∪−→c 3 and ρ be an irreducible representation

of π1(P ). Assume that ρ(−→c i)’s are hyperbolic (have two fixed

points in CP1).

We construct a developing map P̃ → H3 and its holonomy

representation.
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Parametrizations of pairs of pants

Fix a hyperbolic metric on P so that −→c i are geodesics and

ideally triangulation P by spinning two triangles along −→c i.

−→c 2

∆0

∆1 γ1

γ3

γ2

c̃1

c̃3c̃2

p

−→c 1

γ3

−→c 3

γ2

∗

γ1
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Parametrizations of pairs of pants

Let xi and yi be the fixed points of ρ(γi). By irreducibility

x1, x2, x3, y1, y2, y3 are distinct points of CP1.

Let ei be the one of eigenvalues of ρ(γi). Assume that xi is

the attractive point of ρ(γi) if |ei| > 1.

If we assume that x1 = 0, x2 =∞ and x3 = 1, then

ρ(γ1) =

⎛

⎜⎜⎝
e−1
1 0

e−1
1 −e1

y1
e1

⎞

⎟⎟⎠ , ρ(γ2) =

⎛

⎝e2 (e−1
2 − e2)y2

0 e−1
2

⎞

⎠ ,

ρ(γ3) =
1

y3 − 1

⎛

⎝e−1
3 y3 − e3 (e3 − e−1

3 )y3
e−1
3 − e3 e3y3 − e−1

3

⎞

⎠
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By the relation ρ(γ1)ρ(γ2)ρ(γ3) = I, we obtain

y1 =
e1 − e−1

1

e1 − e2e−1
3

, y2 =
e−1
2 − e−1

1 e3
e−1
2 − e2

, y3 =
e1 − e2e3

e1 − e2e−1
3

.

So the representation is uniquely determined by (x1, x2, x3)

and (e1, e2, e3). Conversely we can construct such representa-

tion for given xi and ei. Up to conjugation, this is uniquely

determined by (e±1
1 , e±1

2 , e±1
3 ).

This gives a lift to a SL(2, C)-representation. Other lifts

are obtained by the action of H1(P ;Z/2Z). For example,

(e1, e2, e3) (→ (−e1,−e2, e3) gives another lift to SL(2, C).
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For general (x1, x2, x3), ρ(γi) are given by

ρ(γi) =
1

eiei+2(xi+1 − xi)(xi+2 − xi)

(
a11 a12
a21 a22

)

,

a11 = e2i ei+2xi(xi − xi+1) + ei+2xi+1(xi+2 − xi) + eiei+1xi(xi+1 − xi+2),

a12 = xi(e
2
i ei+2xi+2(xi+1 − xi) + ei+2xi+1(xi − xi+2) + eiei+1xi(xi+2 − xi+1)),

a21 = e2i ei+2(xi − xi+1) + ei+2(xi+2 − xi) + eiei+1(xi+1 − xi+2),

a22 = e2i ei+2xi+2(xi+1 − xi) + ei+2xi(xi − xi+2) + eiei+1xi(xi+2 − xi+1),

and

yi =
e2i ei+2xi+2(xi − xi+1) + ei+2xi+1(xi+2 − xi) + eiei+1xi(xi+1 − xi+2)

e2i ei+2(xi − xi+1) + ei+2(xi+2 − xi) + eiei+1(xi+1 − xi+2)

for i = 1,2,3 (mod 3).
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Developing map of a pair of pants

Develop the ideal triangle (x1, x2, x3) by

using {ρ(γi)}i.

(e1, e2, e3) = (−0.5,−0.5,−0.5)
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Developing map of a pair of pants

Develop the ideal triangle (x1, x2, x3) by

using {ρ(γi)}i.

(e1, e2, e3) = (−0.5 + 0.2i,−0.5,−0.5)

31-a



Developing map of a pair of pants

Develop the ideal triangle (x1, x2, x3) by

using {ρ(γi)}i.

(e1, e2, e3) = (−0.5 + 0.4i,−0.5,−0.5)

31-b



Developing map of a pair of pants

Conversely the eigenvalues are computed from the cross ratios

associated with the developing map.

ρ(γ2)(x3)e1

e3

e2

e3e1

e2
e1

e2e3

e3

e1e2

e2

e3e1

e3

e1e2

e1

e2e3

x3

x1

x2

ρ(γ1)(x2)
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Gluing developing maps of pairs of pants
We give how to glue two representations of pairs

of pants along a common curve.

P ∪−→c P ′ : Pairs of pants with a common curve −→c

c̃ : a lift of −→c

∆0 and ∆1 : an adjacent pair of ideal triangles in

P̃ sharing ∞ as a common ideal vertex.

P ′

−→c

P

Take ∆′0 and ∆′1 in P̃ ′

similarly.

P̃

c̃∆′0 ∆′1 ∆0 ∆1

P̃ ′
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We can not glue ∆i and ∆′i in equivariant way.

Define ∆ ⊂ P̃ and ∆′ ⊂ P̃ ′ as follows:

y

∆0 ∆1

ρ(γ)∆∆′

ρ(γ)

ρ(γ)x′

P̃P̃ ′ c̃

c̃

y

x

x

x′ x ρ(γ)x

∆′
1∆′

0

Glue ∆ and ∆′ by
(

y x
1 1

) (
t 0
0 t−1

) (
y x
1 1

)−1
.

34



t = i t = i− 0.2 t = i− 0.4
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Coordinates of surface representations

S : a surface of genus g

C = −→c 1 ∪ · · · ∪ −→c 3g−3 : a pants decomposition.

For each curve −→c i, assign two complex parameters, the eigen-

value ei and the twist parameter ti.

Each boundary curve of a pair of pants in-

herits the eigenvalue parameter ei or e−1
i .

e−1
i

ei

eiti

−→ci

36



Transition of the fixed points

Fix a pair of pants P ⊂ S −C. Let ∂P = −→c 1 ∪−→c 2 ∪−→c 3 and ei

be the eigenvalue and xi be the fixed point of ρ(γi).

The fixed points of the adjacent pair of

pants sharing −→c 1 can be expressed by the

twist parameter t1 and the eigenvalues.

x′2

e1

e′1 = 1/e1

e2

e′3

e3

e′2

x1

x3

x2

x′3

37



x′1, x′2 and x′3 are

given by

x′2

e1

e′1 = 1/e1

e2

e′3

e3

e′2

x1

x3

x2

x′3

x3

ρ(γ1)x2

x2

x1

x′3

x′2

ρ(γ1)x′3

x′1 = x1,

x′2 =
a1

a2
,

a1 = e1((e2 − e1e3)(e
′
3 − e1e′2)t1

2 + e3(e1e′3 − e′2))x1(x2 − x3)

+ e1
2e2(e1e′3 − e′2)x2(x3 − x1) + e2(e1e′3 − e′2)x3(x1 − x2),

a2 = e1((e2 − e1e3)(e
′
3 − e1e′2)t1

2 + e3(e1e′3 − e′2))(x2 − x3)

+ e1
2e2(e1e′3 − e′2)(x3 − x1) + e2(e1e′3 − e′2)(x1 − x2),

x′3 =
((e2 − e1e3)t12 + e1e3)x1(x2 − x3) + e1

2e2x2(x3 − x1) + e2x3(x1 − x2)

((e2 − e1e3)t12 + e1e3)(x2 − x3) + e12e2(x3 − x1) + e2(x1 − x2)
.
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Matrices parametrized by (ei, ti)’s

Using these formulas, we can compute the developed image

of the ideal triangles of S.

Take two lifts of ideal triangle ∆0 and γ∆0 of P̃ . Since the

ideal vertices of D(∆0) and D(γ∆0) consist of three points of

CP1, there exists a unique element ρ(γ) such that D(γ∆0) =

ρ(γ)D(∆0).

So we obtain an explicit matrix representatives of the repre-

sentation corresponding to (ei, ti)’s.
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Remarks

• Bonahon gave a parametrization of PSL(2, C) representa-

tions of a surface group by using the shear-bend cocycle

of maximal geodesic lamination λ. Our parametrization

closely related to the shear-bend cocycle.

• Maskit gave an explicit construction of matrix generators

of Fuchsian groups parametrized by Fenchel-Nielsen coor-

dinates.
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One holed torus

Give pointed loops and the parame-

ters as in the Figure:

Let (x1, x2, x3) = (∞,0,1).

(e1, t1)

e2

γ1

γ2γ3

δ1

e2

e1

e2

∞

0

x′3

x′2

1
e−1
1

e′1 = e−1
1

e1 Then compute the transition of the

fixed points using previous formula.

x′2 =

⎛

⎝ e2 − e21
e2(e21 − 1)

⎞

⎠ t21 +
1− e2

e2(e21 − 1)
,

x′3 =
(t21 − 1)(e2 − 1)

e2(e21 − 1)
.
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One holed torus

We have

ρ(γ1) =

⎛

⎝e1 e−1
1 − e−1

1 e−1
2

0 e−1
1

⎞

⎠ .
(e1, t1)

e2

γ1

γ2γ3

δ1

Because ρ(δ1) is the matrix which sends (∞,0,1) to (x′3, x′2,∞),

we have

ρ(δ1) =

⎛

⎝(e
2
1 − e2)t21 + (e2 − 1) (t21 − 1)(e2 − 1)
−e2(e21 − 1) e2(e21 − 1)

⎞

⎠

in PGL(2, C). Actually these matrices satisfy the equality

ρ(δ1)
−1ρ(γ1)

−1ρ(δ1)ρ(γ1) = ρ(γ2)
−1.
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Once punctured torus

When e2 = −1, replace t1 with
√
−1t1, we have

ρ(γ1) =

(
e1 2e−1

1
0 e−1

1

)

,

ρ(δ1) =
1

t1(1− e21)

(
−(e21 + 1)t21 − 2 2(t21 + 1)

e21 − 1 −(e21 − 1)

)

=

⎛

⎜⎝
−(e21+1)t21−2

t1(1−e21)
2(t21+1)
t1(1−e21)

−t−1
1 t−1

1

⎞

⎟⎠ .

Let A = ρ(γ1) and B = ρ(δ1). Then

tr(A) =e1 + e−1
1 , tr(B) =

(e1 + e−1
1 )(t1 + t−1

1 )

(e1 − e−1
1 )

,

tr(AB) =
(e1 + e−1

1 )(e1t1 + e−1
1 t−1

1 )

(e1 − e−1
1 )

.

These satisfy the Markov identity

tr(A)2 + tr(B)2 + tr(AB)2 − tr(A)tr(B)tr(AB) = 0.
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Closed surface of genus 2

Give pointed loops and the parame-

ters as in the Figure:

δ3

(e2, t2) (e3, t3)

(e1, t1)

γ2 γ3

δ2

Let (x1, x2, x3) = (∞,0,1) be fixed points of the lower pants.

Then we have

ρ(γ2) =

(
e−1
2 0

−e2 + e1e−1
3 e2

)

,

ρ(γ3) =

(
e−1
1 e2 e3 − e−1

1 e2
−e−1

3 + e−1
1 e2 e3 + e−1

3 − e−1
1 e2

)

.

44



Closed surface of genus 2
x′2

e1

e2 e3

∞

0

1

e′1 = e−1
1

e−1
3e−1

2

x′3

δ3

(e2, t2) (e3, t3)

(e1, t1)

γ2 γ3

δ2

Then compute the fixed points (x1, x′2, x′3) of the pair of pants

adjacent along −→c 1.
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Closed surface of genus 2

x′3

x′2
e−1
2

x′′3

x′′1
e3e1

e2

e−1
1 e−1

3

∞

Then compute the fixed points

(x′′1, x′2, x′′3) of the pair of pants adja-

cent along −→c 2. We can compute ρ(δ2)

as the matrix which sends (∞,0,1) to

(x′′1, x′2, x′′3).

ρ(δ2) =
1

t1t2

(
a11 a12
a21 a22

)

,

a11 =
(e1e2e3 − 1)(e1e2 − e3)t12t2

2 + (e2e3 − e1)(e1e3 − e2)(t12 + t2
2 − 1)

(e12 − 1)(e22 − 1)e3
,

a12 = −
(e1e3 − e2)(t12 − 1)

(e12 − 1)e2
,

a21 =
e2(t22 − 1)(e2e3 − e1)

(e22 − 1)e3
,

a22 = 1,
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Closed surface of genus 2

Similarly we have

ρ(δ3) =
−1

e1(e32 − 1)t1t3

(
b11 b12
b21 b22

)

,

b11 = −(e1(e1e2e3 − 1)(e1e3 − e2)t1
2t3

2 + e1(e2e3 − e1)(e1e2 − e3)t1
2

+ (e2e3 − e1)(e1e3 − e2)(1− t3
2))/((e1

2 − 1)e2),

b12 = (e1e3 − e2)(e1(e1e2e3 − 1)t1
2t3

2 + (e1 − e2e3)t3
2

+ e1e3(e3 − e1e2)t1
2 + e3(e2 − e1e3))/((e1

2 − 1)e2),

b21 = (e2e3 − e1)(t3
2 − 1),

b22 = (−e2e3 + e1)t3
2 − e1e3

2 + e2e3.

We can check that these matrices satisfy the equality

ρ(δ2)ρ(γ2)
−1ρ(δ2)

−1ρ(γ2)ρ(γ3)ρ(δ3)ρ(γ3)
−1ρ(δ3)

−1 = I,
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Closed surface of genus 2

The traces of ρ(γi) and ρ(δi) are

tr(ρ(γ2)) = e2 + e−1
2 , tr(ρ(γ3)) = e3 + e−1

3 ,

tr(ρ(δ2)) =
(e1e2 − e3)(e1e2e3 − 1)(t12t22 + 1) + (e1e3 − e2)(e2e3 − e1)(t12 + t22)

(e1
2 − 1)(e2

2 − 1)e3t1t2
,

tr(ρ(δ3)) =
(e1e3 − e2)(e1e2e3 − 1)(t12t32 + 1) + (e1e2 − e3)(e2e3 − e1)(t12 + t32)

(e1
2 − 1)e2(e3

2 − 1)t1t3
,

Remark Maskit gave an explicit set of matrix generators

parametrized by Fenchel-Nielsen coordinates.
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Thank you for your attention.
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