Parametrization of
 PSL(n,C)-representations of surface group II

Yuichi Kabaya
(Osaka University)

Hakone, 31 May 2012

Review of part I

S : a compact orientable surface (genus $g,|\partial S|=b, \chi(S)<0$)
$X_{P S L}(S)$: the $\operatorname{PSL}(2, \mathbb{C})$-character variety of S
In part I, we have constructed a map

$$
\mathbb{C}^{6 g-6+2 b} \rightarrow X_{P S L}(S)
$$

essentially considering the action of $\operatorname{PSL}(2, \mathbb{C})$ on $\mathbb{C} P^{1}$.

Review of part I

S : a compact orientable surface (genus $g,|\partial S|=b, \chi(S)<0$)
$X_{P S L}(S)$: the $\operatorname{PSL}(2, \mathbb{C})$-character variety of S
In part I, we have constructed a map

$$
\mathbb{C}^{6 g-6+2 b} \rightarrow X_{P S L}(S)
$$

essentially considering the action of $\operatorname{PSL}(2, \mathbb{C})$ on $\mathbb{C} P^{1}$.

In part II, we will construct $\operatorname{PGL}(n, \mathbb{C})$-representations using the action on the flag manifold \mathcal{F}_{n} based on a work of Fock and Goncharov. This is a joint work with Xin Nie.
$\operatorname{PGL}(n, \mathbb{C}):=\mathrm{GL}(n, \mathbb{C}) / \mathbb{C}^{*}$,
$\operatorname{PSL}(n, \mathbb{C}):=\operatorname{SL}(n, \mathbb{C}) /\left\{\xi \mid \xi^{n}=1\right\}$.
These are isomorphic but $\operatorname{PGL}(n, \mathbb{C})$ is convenient for our arguments.

Flag

A (full) flag in \mathbb{C}^{n} is a sequence of subspaces

$$
\{0\}=V^{0} \subsetneq V^{1} \subsetneq V^{2} \subsetneq \cdots \subsetneq V^{n}=\mathbb{C}^{n}
$$

We denote the set of all flags by $\mathcal{F}_{n} . \operatorname{GL}(n, \mathbb{C})$ and $\operatorname{PGL}(n, \mathbb{C})$ act on \mathcal{F}_{n} from the left.
Fact $\quad \mathcal{F}_{n} \cong \mathrm{GL}(n, \mathbb{C}) / B$ where $B=\left\{\left(\begin{array}{ccc}* & \cdots & * \\ & \cdots & : \\ O & & *\end{array}\right)\right\}$

We represent $X \in \mathrm{GL}(n, \mathbb{C})$ by n column vectors:

$$
X=\left(\begin{array}{llll}
x^{1} & x^{2} & \cdots & x^{n}
\end{array}\right) . \quad\left(x^{i} \in \mathbb{C}^{n}\right)
$$

An upper triangular matrix acts as
$X\left(\begin{array}{ccc}b_{11} & \cdots & b_{1 n} \\ & \cdots & \vdots \\ O & & b_{n n}\end{array}\right)=\left(\begin{array}{llll}b_{11} x^{1} & b_{12} x^{1}+b_{22} x^{2} & \ldots & b_{1 n} x^{1}+\cdots+b_{n n} x^{n}\end{array}\right)$
By setting $X^{i}=\operatorname{span}_{\mathbb{C}}\left\{x^{1}, \ldots, x^{i}\right\}$, we obtain a map

$$
\mathrm{GL}(n, \mathbb{C}) / B \rightarrow \mathcal{F}_{n}
$$

This is bijective.
We call an element of $\mathcal{A} \mathcal{F}_{n}:=\mathrm{GL}(n, \mathbb{C}) / U$ an affine flag where
$U=\left\{\left(\begin{array}{ccc}1 & \cdots & * \\ & \cdots & \vdots \\ O & & 1\end{array}\right)\right\} .\left(\exists\right.$ a projection $\left.\mathcal{A} \mathcal{F}_{n} \rightarrow \mathcal{F}_{n}.\right)$

Generic k-tuples of flags

X_{1}, \ldots, X_{k} : flags
Take a representative $X_{i}=\left(x_{i}^{1} \cdots x_{i}^{n}\right) \in \mathrm{GL}(n, \mathbb{C})$
(X_{1}, \ldots, X_{k}) is generic if

$$
\operatorname{det}\left(x_{1}^{1} \ldots x_{1}^{i_{1}} x_{2}^{1} \ldots x_{2}^{i_{2}} \ldots x_{k}^{1} \ldots x_{k}^{i_{k}}\right) \neq 0
$$

for any $0 \leq i_{1}, \ldots, i_{k} \leq n$ satisfying $i_{1}+i_{2}+\cdots+i_{k}=n$.

Generic k-tuples of flags

X_{1}, \ldots, X_{k} : flags
Take a representative $X_{i}=\left(x_{i}^{1} \cdots x_{i}^{n}\right) \in \mathrm{GL}(n, \mathbb{C})$
(X_{1}, \ldots, X_{k}) is generic if

$$
\operatorname{det}\left(x_{1}^{1} \ldots x_{1}^{i_{1}} x_{2}^{1} \ldots x_{2}^{i_{2}} \ldots x_{k}^{1} \ldots x_{k}^{i_{k}}\right) \neq 0
$$

for any $0 \leq i_{1}, \ldots, i_{k} \leq n$ satisfying $i_{1}+i_{2}+\cdots+i_{k}=n$.
The genericity does not depend on the choices of the matrices X_{i}.

Generic k-tuples of flags

X_{1}, \ldots, X_{k} : flags
Take a representative $X_{i}=\left(x_{i}^{1} \cdots x_{i}^{n}\right) \in \mathrm{GL}(n, \mathbb{C})$
$\left(X_{1}, \ldots, X_{k}\right)$ is generic if

$$
\operatorname{det}\left(x_{1}^{1} \ldots x_{1}^{i_{1}} x_{2}^{1} \ldots x_{2}^{i_{2}} \ldots x_{k}^{1} \ldots x_{k}^{i_{k}}\right) \neq 0
$$

for any $0 \leq i_{1}, \ldots, i_{k} \leq n$ satisfying $i_{1}+i_{2}+\cdots+i_{k}=n$.
The genericity does not depend on the choices of the matrices X_{i}.

Moreover for $X_{1}, \ldots, X_{k} \in \mathcal{A} \mathcal{F}_{n}$, the determinant is a welldefined complex number. Denote it by $\operatorname{det}\left(X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{k}^{i_{k}}\right)$.

n-triangulation

A triple (i, j, k) of integers satisfying $0 \leq i, j, k \leq n$ and $i+j+$ $k=n$ corresponds to an integral point of a triangle.

We give a 'counter-clockwise’ orientation to each interior edges of the n-triangulation.

n-triangulation

A triple (i, j, k) of integers satisfying $0 \leq i, j, k \leq n$ and $i+j+$ $k=n$ corresponds to an integral point of a triangle.

We give a 'counter-clockwise’ orientation to each interior edges of the n-triangulation.

n-triangulation

A triple (i, j, k) of integers satisfying $0 \leq i, j, k \leq n$ and $i+j+$ $k=n$ corresponds to an integral point of a triangle.

We give a 'counter-clockwise’ orientation to each interior edges of the n-triangulation.

n-triangulation

A triple (i, j, k) of integers satisfying $0 \leq i, j, k \leq n$ and $i+j+$ $k=n$ corresponds to an integral point of a triangle.

We give a 'counter-clockwise’ orientation to each interior edges of the n-triangulation.

Definition of the triple ratio

$X, Y, Z \in \mathcal{F}_{n}:$ a generic triple of flags
We fix lifts of X, Y, Z to $\mathcal{A F} \mathcal{F}_{n}$ and denote $\Delta^{i, j, k}:=\operatorname{det}\left(X^{i} Y^{j} Z^{k}\right)$.

The triple ratio is defined (for $1 \leq i, j, k \leq n-1$) by

$$
T^{i, j, k}(X, Y, Z):=\frac{\Delta^{i+1, j, k-1} \Delta^{i-1, j+1, k} \Delta^{i, j-1, k+1}}{\Delta^{i+1, j-1, k} \Delta^{i, j+1, k-1} \Delta^{i-1, j, k+1}}
$$

This does not depend on the choice of the representatives.

Definition of the triple ratio

$X, Y, Z \in \mathcal{F}_{n}:$ a generic triple of flags
We fix lifts of X, Y, Z to $\mathcal{A} \mathcal{F}_{n}$ and denote $\Delta^{i, j, k}:=\operatorname{det}\left(X^{i} Y^{j} Z^{k}\right)$.

The triple ratio is defined (for $1 \leq i, j, k \leq n-1$) by

$$
T^{i, j, k}(X, Y, Z):=\frac{\Delta^{i+1, j, k-1} \Delta^{i-1, j+1, k} \Delta^{i, j-1, k+1}}{\Delta^{i+1, j-1, k} \Delta^{i, j+1, k-1} \Delta^{i-1, j, k+1}} .
$$

This does not depend on the choice of the representatives.

Definition of the triple ratio

$X, Y, Z \in \mathcal{F}_{n}:$ a generic triple of flags
We fix lifts of X, Y, Z to $\mathcal{A} \mathcal{F}_{n}$ and denote $\Delta^{i, j, k}:=\operatorname{det}\left(X^{i} Y^{j} Z^{k}\right)$.

The triple ratio is defined (for $1 \leq i, j, k \leq n-1$) by

$$
T^{i, j, k}(X, Y, Z):=\frac{\Delta^{i+1, j, k-1} \Delta^{i-1, j+1, k} \Delta^{i, j-1, k+1}}{\Delta^{i+1, j-1, k} \Delta^{i, j+1, k-1} \Delta^{i-1, j, k+1}}
$$

This does not depend on the choice of the representatives.

Definition of the triple ratio

$X, Y, Z \in \mathcal{F}_{n}:$ a generic triple of flags
We fix lifts of X, Y, Z to $\mathcal{A} \mathcal{F}_{n}$ and denote $\Delta^{i, j, k}:=\operatorname{det}\left(X^{i} Y^{j} Z^{k}\right)$.

The triple ratio is defined (for $1 \leq i, j, k \leq n-1$) by

$$
T^{i, j, k}(X, Y, Z):=\frac{\Delta^{i+1, j, k-1} \Delta^{i-1, j+1, k} \Delta^{i, j-1, k+1}}{\Delta^{i+1, j-1, k} \Delta^{i, j+1, k-1} \Delta^{i-1, j, k+1}}
$$

This does not depend on the choice of the representatives.

Definition of the triple ratio

$X, Y, Z \in \mathcal{F}_{n}:$ a generic triple of flags
We fix lifts of X, Y, Z to $\mathcal{A} \mathcal{F}_{n}$ and denote $\Delta^{i, j, k}:=\operatorname{det}\left(X^{i} Y^{j} Z^{k}\right)$.

The triple ratio is defined (for $1 \leq i, j, k \leq n-1$) by

$$
T^{i, j, k}(X, Y, Z):=\frac{\Delta^{i+1, j, k-1} \Delta^{i-1, j+1, k} \Delta^{i, j-1, k+1}}{\Delta^{i+1, j-1, k} \Delta^{i, j+1, k-1} \Delta^{i-1, j, k+1}}
$$

This does not depend on the choice of the representatives.

Definition of the triple ratio

$X, Y, Z \in \mathcal{F}_{n}:$ a generic triple of flags
We fix lifts of X, Y, Z to $\mathcal{A F} \mathcal{F}_{n}$ and denote $\Delta^{i, j, k}:=\operatorname{det}\left(X^{i} Y^{j} Z^{k}\right)$.

The triple ratio is defined (for $1 \leq i, j, k \leq n-1$) by

$$
T^{i, j, k}(X, Y, Z):=\frac{\Delta^{i+1, j, k-1} \Delta^{i-1, j+1, k} \Delta^{i, j-1, k+1}}{\Delta^{i+1, j-1, k} \Delta^{i, j+1, k-1} \Delta^{i-1, j, k+1}}
$$

This does not depend on the choice of the representatives.

Definition of the triple ratio

$X, Y, Z \in \mathcal{F}_{n}:$ a generic triple of flags
We fix lifts of X, Y, Z to $\mathcal{A F} \mathcal{F}_{n}$ and denote $\Delta^{i, j, k}:=\operatorname{det}\left(X^{i} Y^{j} Z^{k}\right)$.

The triple ratio is defined (for $1 \leq i, j, k \leq n-1$) by

$$
T^{i, j, k}(X, Y, Z):=\frac{\Delta^{i+1, j, k-1} \Delta^{i-1, j+1, k} \Delta^{i, j-1, k+1}}{\Delta^{i+1, j-1, k} \Delta^{i, j+1, k-1} \Delta^{i-1, j, k+1}}
$$

This does not depend on the choice of the representatives.

Facts

For a generic triple $X, Y, Z \in \mathcal{F}_{n}$ and $A \in \operatorname{PGL}(n, \mathbb{C})$, we have

$$
\begin{aligned}
& T^{i, j, k}(X, Y, Z)=T^{j, k, i}(Y, Z, X)=T^{k, i, j}(Z, X, Y) \\
& T^{i, j, k}(X, Y, Z)=T^{i, j, k}(A X, A Y, A Z)
\end{aligned}
$$

If we let

$$
\operatorname{Conf}_{k}\left(\mathcal{F}_{n}\right)=\mathrm{GL}(n, \mathbb{C}) \backslash\left\{\left(X_{1}, \ldots, X_{k}\right) \mid X_{1}, \ldots, X_{k}: \text { generic }\right\}
$$

$T^{i, j, k}$ are invariants of $\operatorname{Conf}_{3}\left(\mathcal{F}_{n}\right)$. Moreover,

Theorem (Fock-Goncharov)

A point of $\operatorname{Conf}_{3}\left(\mathcal{F}_{n}\right)$ is completely determined by the $\frac{(n-1)(n-2)}{2}$ triple ratios.

We will give a sketch of a proof.

Prop 1

Let (X, Y, Z) be a generic triple of \mathcal{F}_{n}. Then there exists a unique $A \in \mathrm{GL}(n, \mathbb{C})$ and upper triangular matrices B_{1}, B_{2}, B_{3} up to scalar multiplication s.t.

$$
\begin{gathered}
A X B_{1}=\left(\begin{array}{ccc}
1 & & O \\
& \cdots & \\
O & & 1
\end{array}\right), \quad A Y B_{2}=\left(\begin{array}{llll}
O & & 1 \\
& \vdots & \\
1 & & O
\end{array}\right) \\
A Z B_{3}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
1 & 1 & & O \\
\vdots & & \cdots & \\
1 & * & & 1
\end{array}\right)
\end{gathered}
$$

Prop 1

Let (X, Y, Z) be a generic triple of \mathcal{F}_{n}. Then there exists a unique $A \in \mathrm{GL}(n, \mathbb{C})$ and upper triangular matrices B_{1}, B_{2}, B_{3} up to scalar multiplication s.t.

$$
\begin{gathered}
A X B_{1}=\left(\begin{array}{ccc}
1 & & O \\
& \cdots & \\
O & & 1
\end{array}\right), \quad A Y B_{2}=\left(\begin{array}{llll}
O & & 1 \\
& \vdots & \\
1 & & O
\end{array}\right) \\
A Z B_{3}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
1 & 1 & & O \\
\vdots & & \cdots & \\
1 & * & & 1
\end{array}\right)
\end{gathered}
$$

(Thus the lower triangular part of $A Z B_{3}$ gives a set of complete invariants of the configuration of generic triples of flags.)

Prop 2

The lower triangular part of $A X B_{3}$ is uniquely determined by the triple ratios $T^{i, j, k}(X, Y, Z)$

From Prop 1 and 2, we obtain the Fock-Goncharov's thm.
E.g. When $n=3$, let $T=T^{1,1,1}(X, Y, Z)$, then

$$
I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad C_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & T+1 & 1
\end{array}\right)
$$

When $n=4$, let $T^{i j k}=T^{i, j, k}(X, Y, Z)$, then
$I_{4}, \quad C_{4},\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & T^{121}+1 & 1 & 0 \\ 1 & \left(T^{211}+1\right) T^{121}+1 & \left(T^{112}+1\right) T^{211}+1 & 1\end{array}\right)$.

Actually we can construct $A \in \mathrm{PGL}$ in Prop 1 explicitly.
Lem For a generic triple of flags (X, Y, Z), there exists a unique element $A \in \mathrm{GL}(n, \mathbb{C})$ such that

$$
A X=\left(\begin{array}{ccc}
x_{11}^{\prime} & \cdots & x_{1 n}^{\prime} \\
& \cdots & \vdots \\
O & & x_{n n}^{\prime}
\end{array}\right), \quad A Y=\left(\begin{array}{ccc}
O & & y_{1 n}^{\prime} \\
& \vdots & \vdots \\
y_{n 1}^{\prime} & \cdots & y_{n n}^{\prime}
\end{array}\right), \quad A z^{1}=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) .
$$

Proof We need to find a matrix $A=\left(a_{i j}\right)$ satisfying

$$
\begin{aligned}
a_{i 1} x_{1}^{j}+a_{i 2} x_{2}^{j}+\cdots+a_{i n} x_{n}^{j}=0, & (j<i) \\
a_{i 1} y_{1}^{j}+a_{i 2} y_{2}^{j}+\cdots+a_{i n} y_{n}^{j}=0, & (j<n-i+1) \\
a_{i 1} z_{1}^{1}+a_{i 2} z_{2}^{1}+\cdots+a_{i n} z_{n}^{1}=1 . &
\end{aligned}
$$

$$
\begin{aligned}
a_{i 1} x_{1}^{j}+a_{i 2} x_{2}^{j}+\cdots+a_{i n} x_{n}^{j} & =0, \quad(j<i) \\
a_{i 1} y_{1}^{j}+a_{i 2} y_{2}^{j}+\cdots+a_{i n} y_{n}^{j} & =0, \quad(j<n-i+1) \\
a_{i 1} z_{1}^{1}+a_{i 2} z_{2}^{1}+\cdots+a_{i n} z_{n}^{1} & =1 .
\end{aligned}
$$

This system of linear equations is equivalent to:

$$
\left(\begin{array}{ccc}
x_{1}^{1} & \ldots & x_{n}^{1} \\
\vdots & & \vdots \\
x_{1}^{i-1} & \ldots & x_{n}^{i-1} \\
y_{1}^{1} & \ldots & y_{n}^{1} \\
\vdots & & \vdots \\
y_{1}^{n-i} & \ldots & y_{n}^{n-i} \\
z_{1}^{1} & \ldots & z_{n}^{1}
\end{array}\right)\left(\begin{array}{c}
a_{i 1} \\
\vdots \\
a_{i n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right) . \quad(i=1, \ldots, n)
$$

By genericity, the above $n \times n$-matrix is invertible, thus there exists a unique $A \in M(n, \mathbb{C})$. \square

Cor A Let $X, Y \in \mathcal{F}_{n}$ and $z \in \mathbb{C} P^{n-1}$ be a generic triple, and $X^{\prime}, Y^{\prime} \in \mathcal{F}_{n}$ and $z^{\prime} \in \mathbb{C} P^{n-1}$ another generic triple. Then there exists a unique matrix $A \in \operatorname{PGL}(n, \mathbb{C})$ s.t.

$$
A X=X^{\prime}, \quad A Y=Y^{\prime}, \quad A z=z^{\prime}
$$

Proof Since there exist unique A_{1} and A_{2} in $\operatorname{PGL}(n, \mathbb{C})$ s.t.

$$
X \underset{A_{1}}{\longrightarrow} I_{n} \overleftarrow{A_{2}} X^{\prime}, \quad Y \underset{A_{1}}{\longrightarrow} C_{n} \overleftarrow{A_{2}} Y^{\prime}, \quad z \underset{A_{1}}{\longrightarrow}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) \overleftarrow{A_{2}} z^{\prime}
$$

Put $A=A_{2}^{-1} A_{1}$.
Cor B Let $X, Y \in \mathcal{F}_{n}$ and $z \in \mathbb{C} P^{n-1}$ be a generic triple. For any $\frac{(n-1)(n-2)}{2}$ non-zero complex numbers $\left\{T^{i, j, k}\right\}$, there exists a unique $Z \in \mathcal{F}_{n}$ s.t. $Z^{1}=z$ and $T^{i, j, k}(X, Y, Z)=T^{i, j, k}$.

Definition of the edge function

$X, Z \in \mathcal{A F}_{n}$: affine flags, $\quad y, t \in \mathbb{C}^{n}:$ vectors

We define the edge function for $i=1, \ldots, n-1$

$$
\delta^{i}(X, y, Z, t)=-\frac{\Delta^{i, n-i-1,1}(X, Z, t) \Delta^{i-1, n-i, 1}(X, Z, y)}{\Delta^{i-1, n-1,1}(X, Z, t) \Delta^{i, n-i-1,1}(X, Z, y)}
$$

This is well-defined for $X, Z \in \mathcal{F}_{n}$ and $y, t \in \mathbb{C} P^{n-1}$.

Definition of the edge function

$X, Z \in \mathcal{A} \mathcal{F}_{n}$: affine flags, $\quad y, t \in \mathbb{C}^{n}:$ vectors

We define the edge function for $i=1, \ldots, n-1$

$$
\delta^{i}(X, y, Z, t)=-\frac{\Delta^{i, n-i-1,1}(X, Z, t) \Delta^{i-1, n-i, 1}(X, Z, y)}{\Delta^{i-1, n-1,1}(X, Z, t) \Delta^{i, n-i-1,1}(X, Z, y)}
$$

This is well-defined for $X, Z \in \mathcal{F}_{n}$ and $y, t \in \mathbb{C} P^{n-1}$.

Definition of the edge function

$X, Z \in \mathcal{A F}_{n}$: affine flags, $\quad y, t \in \mathbb{C}^{n}:$ vectors

We define the edge function for $i=1, \ldots, n-1$

$$
\delta^{i}(X, y, Z, t)=-\frac{\Delta^{i, n-i-1,1}(X, Z, t) \Delta^{i-1, n-i, 1}(X, Z, y)}{\Delta^{i-1, n-1,1}(X, Z, t) \Delta^{i, n-i-1,1}(X, Z, y)}
$$

This is well-defined for $X, Z \in \mathcal{F}_{n}$ and $y, t \in \mathbb{C} P^{n-1}$.

Definition of the edge function

$X, Z \in \mathcal{A F}_{n}$: affine flags, $\quad y, t \in \mathbb{C}^{n}:$ vectors

We define the edge function for $i=1, \ldots, n-1$

$$
\delta^{i}(X, y, Z, t)=-\frac{\Delta^{i, n-i-1,1}(X, Z, t) \Delta^{i-1, n-i, 1}(X, Z, y)}{\Delta^{i-1, n-1,1}(X, Z, t) \Delta^{i, n-i-1,1}(X, Z, y)}
$$

This is well-defined for $X, Z \in \mathcal{F}_{n}$ and $y, t \in \mathbb{C} P^{n-1}$.

Definition of the edge function

$X, Z \in \mathcal{A F}_{n}$: affine flags, $\quad y, t \in \mathbb{C}^{n}:$ vectors

We define the edge function for $i=1, \ldots, n-1$

$$
\delta^{i}(X, y, Z, t)=-\frac{\Delta^{i, n-i-1,1}(X, Z, t) \Delta^{i-1, n-i, 1}(X, Z, y)}{\Delta^{i-1, n-1,1}(X, Z, t) \Delta^{i, n-i-1,1}(X, Z, y)}
$$

This is well-defined for $X, Z \in \mathcal{F}_{n}$ and $y, t \in \mathbb{C} P^{n-1}$.

For a quadruple $X, Y, Z, T \in \mathcal{F}_{n}$, we simply denote

$$
\delta^{i}(X, Y, Z, T):=\delta^{i}\left(X, Y^{1}, Z, T^{1}\right)
$$

This satisfies

$$
\delta^{i}(A X, A Y, A Z, A T)=\delta^{i}(X, Y, Z, T)
$$

Thus they are functions on $\operatorname{Conf}_{4}\left(\mathcal{F}_{n}\right)$.
For (X, Y, Z, T), we have $2 \times \frac{(n-1)(n-2)}{2}$ triple ratios from (X, Y, Z) and (X, Z, T) and ($n-1$) edge functions.

Theorem (Fock-Goncharov)

These $(n-1)(n-2)+(n-1)=(n-1)^{2}$ invariants completely determine a point of $\operatorname{Conf}_{4}\left(\mathcal{F}_{n}\right)$.

Lem C Let $X, Z \in \mathcal{F}_{n}$ and $y \in \mathbb{C} P^{n-1}$. For any $d_{1}, \ldots, d_{n-1} \in$ \mathbb{C}^{*}, there exits a unique $t \in \mathbb{C} P^{n-1}$ s.t.

$$
\delta^{i}(X, y, Z, t)=d_{i} . \quad(i=1, \ldots, n-1)
$$

Proof By Cor A, we can assume that

$$
X=\left(\begin{array}{ccc}
1 & & O \\
& \cdots & \\
O & & 1
\end{array}\right), \quad Z=\left(\begin{array}{ccc}
O & & 1 \\
& \vdots & \\
1 & & O
\end{array}\right), \quad y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

Then

Thus $t \in \mathbb{C} P^{n-1}$ is uniquely determined by $\delta^{1}, \ldots, \delta^{n-1} . \square$

When $n=2$, if we regard $\left[y_{1}: y_{2}\right] \in \mathbb{C} P^{1}$ as $y=y_{1} / y_{2} \in \mathbb{C} \cup\{\infty\}$ we have the following picture:

$$
\begin{gathered}
\delta^{1}(X, y, Z, t)=-\frac{y_{2}}{y_{1}} \cdot \frac{t_{1}}{t_{2}} \\
\therefore t=-d y \\
\text { where } d=\delta^{1}(X, y, Z, t)
\end{gathered}
$$

Parametrization of reps of $\pi_{1}(S)$

S : a bordered surface, T : an ideal triangulation of S

Parametrization of reps of $\pi_{1}(S)$

S : a bordered surface, T : an ideal triangulation of S
For each triangle of T, assign $\frac{(n-1)(n-2)}{2}$ complex numbers corresponding to the triple ratios.

Parametrization of reps of $\pi_{1}(S)$

S : a bordered surface, T : an ideal triangulation of S
For each triangle of T, assign $\frac{(n-1)(n-2)}{2}$ complex numbers corresponding to the triple ratios.

For each edge of T, assign ($n-1$) complex numbers corresponding to the edge functions.

Parametrization of reps of $\pi_{1}(S)$

S : a bordered surface, T : an ideal triangulation of S
For each triangle of T, assign $\frac{(n-1)(n-2)}{2}$ complex numbers corresponding to the triple ratios.

For each edge of T, assign ($n-1$) complex numbers corresponding to the edge functions.

Using Cor B and Lem C, we can construct a developing map $\partial_{\infty} \widetilde{T} \rightarrow \mathcal{F}_{n}$ from these parameters as follows.
(\widetilde{T} is the triangulation lifted from T to the universal cover \widetilde{S} and $\partial_{\infty} \widetilde{T}$ is its ideal boundary.)

Construction of the developing map

Take $X_{0}, X_{1} \in \mathcal{F}_{n}$ and $X_{2}^{1} \in \mathbb{C} P^{n-1}$ arbitrarily.

Construction of the developing map

> Lift $X_{2}^{1} \in \mathbb{C} P^{n-1}$ to $X_{2} \in \mathcal{F}_{n}$ by Cor B according to the triple ratio parameters.

(Cor B Let $X, Y \in \mathcal{F}_{n}$ and $z \in \mathbb{C} P^{n-1}$ be a generic triple. For any $\frac{(n-1)(n-2)}{2}$ non-zero complex numbers $\left\{T^{i, j, k}\right\}$, there exists
a unique $Z \in \mathcal{F}_{n}$ s.t. $Z^{1}=z$ and $T^{i, j, k}(X, Y, Z)=T^{i, j, k}$.)

Construction of the developing map

Define $X_{3}^{1}, X_{4}^{1}, X_{5}^{1} \in \mathbb{C} P^{n-1}$ by Lem
C according to the edge functions.
(Lem C Let $X, Z \in \mathcal{F}_{n}$ and $y \in \mathbb{C} P^{n-1}$. For any $d_{1}, \ldots, d_{n-1} \in$ \mathbb{C}^{*}, there exits a unique $t \in \mathbb{C} P^{n-1}$ s.t.

$$
\left.\delta^{i}(X, y, Z, t)=d_{i} . \quad(i=1, \ldots, n-1) \quad\right)
$$

Construction of the developing map

Lift $\quad X_{3}^{1}, X_{4}^{1}, X_{5}^{1} \in \mathbb{C} P^{n-1}$ to
$X_{3}, X_{4}, X_{5} \in \mathcal{F}_{n}$ by Cor B according to the triple ratios.
(Cor B Let $X, Y \in \mathcal{F}_{n}$ and $z \in \mathbb{C} P^{n-1}$ be a generic triple. For any $\frac{(n-1)(n-2)}{2}$ non-zero complex numbers $\left\{T^{i, j, k}\right\}$, there exists
a unique $Z \in \mathcal{F}_{n}$ s.t. $Z^{1}=z$ and $T^{i, j, k}(X, Y, Z)=T^{i, j, k}$.

Construction of the developing map

Iterate these procedures, we obtain
a developing map $\partial_{\infty} \widehat{T} \rightarrow \mathcal{F}_{n}$.

Construction of the developing map

By Cor A, we can also obtain a representation $\pi_{1}(S) \rightarrow \mathrm{PGL}(n, \mathbb{C})$ explicitly.
(Cor A Let $X, Y \in \mathcal{F}_{n}$ and $z \in \mathbb{C} P^{n-1}$ be a generic triple, and $X^{\prime}, Y^{\prime} \in \mathcal{F}_{n}$ and $z^{\prime} \in \mathbb{C} P^{n-1}$ another generic triple. Then there exists a unique matrix $A \in \operatorname{PGL}(n, \mathbb{C})$ s.t.

$$
\left.A X=X^{\prime}, \quad A Y=Y^{\prime}, \quad A z=z^{\prime} .\right)
$$

In particular, representations of the π_{1} of a pair of pants are parametrized by $2 \times \frac{(n-1)(n-2)}{2}+3 \times(n-1)=n^{2}-1$ parameters.

In particular, representations of the π_{1} of a pair of pants are parametrized by $2 \times \frac{(n-1)(n-2)}{2}+3 \times(n-1)=n^{2}-1$ parameters. The remaining problem is how to glue the representations along boundaries.

In particular, representations of the π_{1} of a pair of pants are parametrized by $2 \times \frac{(n-1)(n-2)}{2}+3 \times(n-1)=n^{2}-1$ parameters. The remaining problem is how to glue the representations along boundaries.

We can glue two representations along their boundaries iff their monodromies along the boundaries are conjugate, in other words, iff they have same eigenvalues.

In particular, representations of the π_{1} of a pair of pants are parametrized by $2 \times \frac{(n-1)(n-2)}{2}+3 \times(n-1)=n^{2}-1$ parameters.

The remaining problem is how to glue the representations along boundaries.

We can glue two representations along their boundaries iff their monodromies along the boundaries are conjugate, in other words, iff they have same eigenvalues.

We have to compute the eigenvalues of the monodromy along a boundary curve from the triple ratios and edge functions.

Computation of eigenvalues

P : a pair of pants
Fix $\gamma_{a}, \gamma_{b}, \gamma_{c} \in \pi_{1}(P)$ as in the figure.
$\rho: \pi_{1}(P) \rightarrow \mathrm{GL}(n, \mathbb{C}):$ a rep
$e_{a, 1}, \ldots, e_{a, n}:$ the eigenvalues of $\rho\left(\gamma_{a}\right)$

Computation of eigenvalues

P : a pair of pants
Fix $\gamma_{a}, \gamma_{b}, \gamma_{c} \in \pi_{1}(P)$ as in the figure.
$\rho: \pi_{1}(P) \rightarrow \mathrm{GL}(n, \mathbb{C}):$ a rep
$e_{a, 1}, \ldots, e_{a, n}:$ the eigenvalues of $\rho\left(\gamma_{a}\right)$

Assume that $e_{a, i}$'s are distinct.
v_{a}^{i} : the eigenvector corresponding to $e_{a, i}$
Similarly, define $e_{b, i}, v_{b}^{i}$, etc.

Computation of eigenvalues

P : a pair of pants
Fix $\gamma_{a}, \gamma_{b}, \gamma_{c} \in \pi_{1}(P)$ as in the figure.
$\rho: \pi_{1}(P) \rightarrow \mathrm{GL}(n, \mathbb{C}):$ a rep
$e_{a, 1}, \ldots, e_{a, n}$: the eigenvalues of $\rho\left(\gamma_{a}\right)$

Assume that $e_{a, i}$'s are distinct.
v_{a}^{i} : the eigenvector corresponding to $e_{a, i}$
Similarly, define $e_{b, i}, v_{b}^{i}$, etc.
Let $X_{a}^{i}=\operatorname{span}_{\mathbb{C}}\left\{v_{a}^{1}, \ldots, v_{a}^{i}\right\}$.
This defines a flag $X_{a}=\left\{X_{a}^{1} \subsetneq X_{a}^{2} \subsetneq \cdots \subsetneq X_{a}^{n}\right\}$.
Define X_{b} and X_{c} similarly. By definition,

$$
\rho\left(\gamma_{a}\right) X_{a}=X_{a}, \quad \rho\left(\gamma_{b}\right) X_{b}=X_{b}, \quad \rho\left(\gamma_{c}\right) X_{c}=X_{c}
$$

Define

$$
X_{a^{\prime}}=\rho\left(\gamma_{c}\right) X_{a}, \quad X_{b^{\prime}}=\rho\left(\gamma_{a}\right) X_{b}, \quad X_{c^{\prime}}=\rho\left(\gamma_{b}\right) X_{c}
$$

We have $\rho\left(\gamma_{a}\right) X_{c^{\prime}}=\rho\left(\gamma_{a}\right) \rho\left(\gamma_{b}\right) X_{c}=\rho\left(\gamma_{c}{ }^{-1}\right) X_{c}=X_{c}$.
Similarly $\rho\left(\gamma_{b}\right) X_{a^{\prime}}=X_{a}$ and $\rho\left(\gamma_{c}\right) X_{b^{\prime}}=X_{b}$.

We have

$$
\begin{aligned}
\rho\left(\gamma_{a}\right)\left(X_{a}, X_{c^{\prime}}, X_{b}\right) & =\left(X_{a}, X_{c}, X_{b^{\prime}}\right), \\
\rho\left(\gamma_{b}\right)\left(X_{a^{\prime}}, X_{c}, X_{b}\right) & =\left(X_{a}, X_{c^{\prime}}, X_{b}\right), \\
\rho\left(\gamma_{c}\right)\left(X_{a}, X_{c}, X_{b^{\prime}}\right) & =\left(X_{a^{\prime}}, X_{c}, X_{b}\right) .
\end{aligned}
$$

Thus these triples are in the same $G L(n, \mathbb{C})$-orbit. Thus they have same triple ratios.

We assume that $\left(X_{a}, X_{b}, X_{c}\right)$ and ($X_{a}, X_{c^{\prime}}, X_{b}$) are generic triples.

We define the triple ratio parameters by

$$
\begin{aligned}
T_{a, b, c}^{i, j, k} & :=T^{i, j, k}\left(X_{a}, X_{b}, X_{c}\right) \\
U_{a, c, b}^{i, j, k} & :=T^{i, j, k}\left(X_{a}, X_{c^{\prime}}, X_{b}\right)
\end{aligned}
$$

and the edge functions

$$
\begin{aligned}
\delta_{a, b}^{i} & :=\delta^{i}\left(X_{a}, X_{c}^{1}, X_{b}, X_{c^{\prime}}^{1}\right) \\
\delta_{b, c}^{i} & :=\delta^{i}\left(X_{b}, X_{a}^{1}, X_{c}, X_{a^{\prime}}^{1}\right) \\
\delta_{c, a}^{i} & :=\delta^{i}\left(X_{c}, X_{b}^{1}, X_{a}, X_{b^{\prime}}^{1}\right)
\end{aligned}
$$

We use the following notation:

$$
T_{a, b, c}^{i, j, k}=T_{b, c, a}^{j, k, i}=T_{c, a, b}^{k, i, j}, \quad U_{a, c, b}^{i, j, k}=U_{c, b, a}^{j, k, i}=U_{b, a, c}^{k, i, j}, \quad \delta_{b, a}^{i}=\delta_{a, b}^{n-i}
$$

Thm

We have

$$
\frac{e_{a, i+1}}{e_{a, i}}=\delta_{a, b}^{i} \delta_{a, c}^{i} \prod_{l=1}^{n-1-i} T_{a, b, c}^{i, l, n-i-l} U_{a, c, b}^{i, l, n-i-l}
$$

for $i=1, \ldots, n-1$.
The right hand side is the product of the triple ratios and the edge functions on the red line.

Sketch of proof

We fix a lift $\widetilde{X}_{a} \in \mathcal{A} \mathcal{F}_{n}$ of X_{a}. (Fix \widetilde{X}_{b} and \widetilde{X}_{c} similarly).
For $0 \leq i, j, k \leq n$ satisfying $i+j+k=n$, we denote

$$
\Delta_{a, c^{\prime}, b}^{i, j, k}=\operatorname{det}\left(\widetilde{X}_{a}^{i} \widetilde{X}_{c^{\prime}}^{j} \widetilde{X}_{b}^{k}\right), \quad \Delta_{a, c, b^{\prime}}^{i, j, k}=\operatorname{det}\left(\widetilde{X}_{a}^{i} \widetilde{X}_{c}^{k} \widetilde{X}_{b^{\prime}}^{j}\right), \text { etc. }
$$

Sketch of proof

We fix a lift $\widetilde{X}_{a} \in \mathcal{A} \mathcal{F}_{n}$ of X_{a}. (Fix \widetilde{X}_{b} and \widetilde{X}_{c} similarly).
For $0 \leq i, j, k \leq n$ satisfying $i+j+k=n$, we denote

$$
\Delta_{a, c^{\prime}, b}^{i, j, k}=\operatorname{det}\left(\widetilde{X}_{a}^{i} \widetilde{X}_{c^{\prime}}^{j} \widetilde{X}_{b}^{k}\right), \quad \Delta_{a, c, b^{\prime}}^{i, j, k}=\operatorname{det}\left(\widetilde{X}_{a}^{i} \widetilde{X}_{c}^{k} \widetilde{X}_{b^{\prime}}^{j}\right), \text { etc. }
$$

Consider the product of the triple ratios and the edge functions corresponding to the vertices on the red line. These are written in terms of $\Delta_{*, *, *}^{i, j, k}$, and most of them cancel out:

$$
\begin{aligned}
\delta_{a, b}^{i} \delta_{a, c}^{i} & \prod_{l=1}^{n-1-i} T_{a, b, c}^{i, l, n-i-l} U_{a, c, b}^{i, l, n-i-l} \\
& =\frac{\Delta_{a c^{\prime} b}^{i+1,0, n-i-1} \Delta_{a c^{\prime} b}^{i-1,1, n-i}}{\Delta_{a c^{\prime} b}^{i, 0, n-i} \Delta_{a c^{\prime} b}^{i, n-i-1}} \frac{\Delta_{a c b^{\prime}}^{i, 0, i} \Delta_{a c b^{\prime}}^{i, 1, n-i-1}}{\Delta_{a c b^{\prime}}^{i+1,0, n-i-1} \Delta_{a c b^{\prime}}^{i-1,1, n-i}}
\end{aligned}
$$

On the other hand, we have $\operatorname{det} \rho\left(\gamma_{a}\right) \cdot \operatorname{det}\left(\widetilde{X}_{a}^{i} \widetilde{X}_{c^{\prime}}^{j} \widetilde{X}_{b}^{k}\right)=\operatorname{det}\left(\left(\rho\left(\gamma_{a}\right) \widetilde{X_{a}}\right)^{i}\left(\rho\left(\gamma_{a}\right) \widetilde{X}_{c^{\prime}}\right)^{j}\left(\rho\left(\gamma_{a}\right) \widetilde{X}_{b}\right)^{k}\right)$

$$
=\frac{e_{a, 1} \cdots e_{a, i}}{e_{c, 1} \cdots e_{c, j}} \operatorname{det}\left(\widetilde{X}_{a}^{i} \widetilde{X}_{c}^{j} \widetilde{X}_{b^{\prime}}^{k}\right)
$$

Thus we have

$$
\frac{\Delta_{a c^{\prime} b}^{i+1,0, n-i-1} \Delta_{a c^{\prime} b}^{i-1,1, n-i}}{\Delta_{a c^{\prime} b}^{i, n-i} \Delta_{a c^{\prime} b}^{i, 1, n-i-1}}=\frac{e_{a, i+1}}{e_{a, i}} \frac{\Delta_{a c b^{\prime}}^{i+1,0, n-i-1} \Delta_{a c b^{\prime}}^{i-1, n-i}}{\Delta_{a c b^{\prime}}^{i, 0, n-i} \Delta_{a c b^{\prime}}^{i, 1, n-1-1}}
$$

Therefore

$$
\begin{aligned}
\delta_{a, b}^{i} \delta_{a, c}^{i} & \prod_{l=1}^{n-1-i} T_{a, b, c}^{i, l, n-i-l} U_{a, c, b}^{i, l, n-i-l} \\
& =\frac{\Delta_{a c^{\prime} b}^{i+1,0, n-i-1} \Delta_{a c^{\prime} b}^{i-1,1, n-i}}{\Delta_{a c^{\prime} b}^{i, 0, n-i} \Delta_{a c^{\prime} b}^{i, 1,-i-1}} \cdot \frac{\Delta_{a c b^{\prime}}^{i, 0, n-i} \Delta_{a c b^{\prime}}^{i, 1, n-i-1}}{\Delta_{a c b^{\prime}}^{i+1,0, n-i-1} \Delta_{a c b^{\prime}}^{i-1,1, n-i}} \\
& =\frac{e_{a, i+1}}{e_{a, i}} .
\end{aligned}
$$

Twist parameters

Let $S=P \cup P^{\prime}$ be a four-holed sphere. We fix a system of generators $\gamma_{a}, \gamma_{b}, \gamma_{c}, \gamma_{d}, \gamma_{e} \in \pi_{1}(S)$ as in the figure. Let $\rho: \pi_{1}(S) \rightarrow \operatorname{PGL}(n, \mathbb{C})$.

Twist parameters

Let $S=P \cup P^{\prime}$ be a four-holed sphere. We fix a system of generators $\gamma_{a}, \gamma_{b}, \gamma_{c}, \gamma_{d}, \gamma_{e} \in \pi_{1}(S)$ as in the figure. Let $\rho: \pi_{1}(S) \rightarrow \operatorname{PGL}(n, \mathbb{C})$.

We need to assume some genericity conditions but I omit them here.

Twist parameters

Let $S=P \cup P^{\prime}$ be a four-holed sphere. We fix a system of generators $\gamma_{a}, \gamma_{b}, \gamma_{c}, \gamma_{d}, \gamma_{e} \in \pi_{1}(S)$ as in the figure. Let $\rho: \pi_{1}(S) \rightarrow \operatorname{PGL}(n, \mathbb{C})$.
We need to assume some genericity conditions but I omit them here. Let $v_{a}^{1}, \ldots, v_{a}^{n}$ be the eigenvectors of $\rho\left(\gamma_{a}\right)$.

Define flags X_{a} and Y_{a} by

$$
X_{a}^{k}=\operatorname{span}_{\mathbb{C}}\left\{v_{a}^{1}, \ldots, v_{a}^{k}\right\}, \quad Y_{a}^{k}=\operatorname{span}_{\mathbb{C}}\left\{v_{a}^{n-k+1}, \ldots, v_{a}^{n}\right\}
$$

We have $\rho\left(\gamma_{a}\right) X_{a}=X_{a}$ and $\rho\left(\gamma_{a}\right) Y_{a}=Y_{a}$.

Twist parameters

Let $S=P \cup P^{\prime}$ be a four-holed sphere. We fix a system of generators $\gamma_{a}, \gamma_{b}, \gamma_{c}, \gamma_{d}, \gamma_{e} \in \pi_{1}(S)$ as in the figure. Let $\rho: \pi_{1}(S) \rightarrow \mathrm{PGL}(n, \mathbb{C})$.
We need to assume some genericity conditions but I omit them here. Let $v_{a}^{1}, \ldots, v_{a}^{n}$ be the eigenvectors of $\rho\left(\gamma_{a}\right)$.

Define flags X_{a} and Y_{a} by

$$
X_{a}^{k}=\operatorname{span}_{\mathbb{C}}\left\{v_{a}^{1}, \ldots, v_{a}^{k}\right\}, \quad Y_{a}^{k}=\operatorname{span}_{\mathbb{C}}\left\{v_{a}^{n-k+1}, \ldots, v_{a}^{n}\right\}
$$

We have $\rho\left(\gamma_{a}\right) X_{a}=X_{a}$ and $\rho\left(\gamma_{a}\right) Y_{a}=Y_{a}$.
By assumption, $\left(X_{a}, Y_{a}, X_{b}^{1}\right)$ and $\left(X_{a}, Y_{a}, X_{e}^{1}\right)$ are generic. Thus we can define the twist parameters along γ_{a} by

$$
\delta^{i}\left(X_{a}, X_{b}^{1}, Y_{a}, X_{e}^{1}\right) \quad(i=1, \ldots, n-1) .
$$

The twist parameter $\delta^{i}\left(X_{a}, X_{b}^{1}, Y_{a}, X_{e}^{1}\right)$ describes the relative position of the two developing maps.

Combining with the triple ratio parameters and the edge functions from two pairs of pants, we can construct a developing map for S, and thus a $\operatorname{PGL}(n, \mathbb{C})$-representation.

F-N coordinates of $\operatorname{PGL}(n, \mathbb{C})$-representations

S : closed, genus $g>1, \quad C$: a pants decomposition of S

F-N coordinates of $\operatorname{PGL}(n, \mathbb{C})$-representations

S : closed, genus $g>1, \quad C$: a pants decomposition of S
For each pair of pants $S \backslash C$, we assign

- $2 \times \frac{(n-1)(n-2)}{2}$ triple ratio parameters, and
- $3 \times(n-1)$ edge function parameters.

F-N coordinates of $\operatorname{PGL}(n, \mathbb{C})$-representations

S : closed, genus $g>1, \quad C$: a pants decomposition of S
For each pair of pants $S \backslash C$, we assign

- $2 \times \frac{(n-1)(n-2)}{2}$ triple ratio parameters, and
- $3 \times(n-1)$ edge function parameters.

For each pants curve, we assign

- $(n-1)$ twist parameters.

For each pants curve of C, we have to impose ($n-1$) relations to have same eigenvalues up to scalar.

For each pants curve of C, we have to impose ($n-1$) relations to have same eigenvalues up to scalar. These relations are explicitly given by Thm:

$$
\frac{e_{a, i+1}}{e_{a, i}}=\delta_{a, b}^{i} \delta_{a, c}^{i} \prod_{l=1}^{n-1-i} T_{a, b, c}^{i, l, n-i-l} U_{a, c, b}^{i, l, n-i-l}
$$

For each pants curve of C, we have to impose ($n-1$) relations to have same eigenvalues up to scalar. These relations are explicitly given by Thm:

$$
\frac{e_{a, i+1}}{e_{a, i}}=\delta_{a, b}^{i} \delta_{a, c}^{i} \prod_{l=1}^{n-1-i} T_{a, b, c}^{i, l, n-i-l} U_{a, c, b}^{i, l, n-i-l},
$$

Thus we have

- $(2 g-2)((n-1)(n-2)+3(n-1))+(3 g-3)(n-1)$ parameters
- $(3 g-3)(n-1)$ relations

For each pants curve of C, we have to impose ($n-1$) relations to have same eigenvalues up to scalar. These relations are explicitly given by Thm:

$$
\frac{e_{a, i+1}}{e_{a, i}}=\delta_{a, b}^{i} \delta_{a, c}^{i} \prod_{l=1}^{n-1-i} T_{a, b, c}^{i, l, n-i-l} U_{a, c, b}^{i, l, n-i-l}
$$

Thus we have

- $(2 g-2)((n-1)(n-2)+3(n-1))+(3 g-3)(n-1)$ parameters
- $(3 g-3)(n-1)$ relations

Thus some subset of the $\operatorname{PGL}(n, \mathbb{C})$-character variety can be parametrized by $(2 g-2)\left(n^{2}-1\right)$ dimensional space.

Thank you for your attention.

