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Review of part I

S : a compact orientable surface (genus g, |∂S| = b, χ(S) < 0)

XPSL(S) : the PSL(2, C)-character variety of S

In part I, we have constructed a map

C6g−6+2b→ XPSL(S)

essentially considering the action of PSL(2, C) on CP1.

In part II, we will construct PGL(n, C)-representations using

the action on the flag manifold Fn based on a work of Fock

and Goncharov. This is a joint work with Xin Nie.
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PGL(n, C) := GL(n, C)/C∗,
PSL(n, C) := SL(n, C)/{ξ | ξn = 1}.

These are isomorphic but PGL(n, C) is convenient for our ar-

guments.

Flag

A (full) flag in Cn is a sequence of subspaces

{0} = V 0 ( V 1 ( V 2 ( · · · ( V n = Cn

We denote the set of all flags by Fn. GL(n, C) and PGL(n, C)

act on Fn from the left.

Fact Fn
∼= GL(n, C)/B where B =



∗ · · · ∗

. . . ...
O ∗



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We represent X ∈ GL(n, C) by n column vectors:

X =
(
x1 x2 · · · xn

)
. (xi ∈ Cn)

An upper triangular matrix acts as

X


b11 · · · b1n

. . . ...
O bnn

 =
(
b11x1 b12x1 + b22x2 . . . b1nx1 + · · ·+ bnnxn

)

By setting Xi = spanC{x1, . . . , xi}, we obtain a map

GL(n, C)/B → Fn.

This is bijective.

We call an element of AFn := GL(n, C)/U an affine flag where

U =



1 · · · ∗

. . . ...
O 1


. (∃ a projection AFn→ Fn.)
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Generic k-tuples of flags

X1, . . . , Xk : flags

Take a representative Xi = (x1
i · · ·xn

i ) ∈ GL(n, C)

(X1, . . . , Xk) is generic if

det(x1
1 . . . x

i1
1 x1

2 . . . x
i2
2 . . . x1

k . . . x
ik
k ) 6= 0

for any 0 ≤ i1, . . . , ik ≤ n satisfying i1 + i2 + · · ·+ ik = n.

The genericity does not depend on the choices of the matrices

Xi.

Moreover for X1, . . . , Xk ∈ AFn, the determinant is a well-

defined complex number. Denote it by det(Xi1
1 X

i2
2 . . . X

ik
k ).
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n-triangulation

A triple (i, j, k) of integers satisfying 0 ≤ i, j, k ≤ n and i + j +

k = n corresponds to an integral point of a triangle.

(2,0,2)

(0,4,0) (0,0,4)

(4,0,0)

(3,0,1)

(1,0,3)

We give a ‘counter-clockwise’ orientation to each interior edges

of the n-triangulation.
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Definition of the triple ratio

X, Y, Z ∈ Fn : a generic triple of flags

We fix lifts of X, Y, Z to AFn and denote ∆i,j,k := det(XiY jZk).

(i, j + 1, k − 1)

(i + 1, j, k − 1)

(i, j − 1, k + 1)

X

Y Z

(i, j, k)

(i− 1, j, k + 1)

(i + 1, j − 1, k)

(i− 1, j + 1, k)

The triple ratio is defined (for 1 ≤ i, j, k ≤ n− 1) by

T i,j,k(X, Y, Z) :=
∆i+1,j,k−1∆i−1,j+1,k∆i,j−1,k+1

∆i+1,j−1,k∆i,j+1,k−1∆i−1,j,k+1
.

This does not depend on the choice of the representatives.
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Facts

For a generic triple X, Y, Z ∈ Fn and A ∈ PGL(n, C), we have

T i,j,k(X, Y, Z) = T j,k,i(Y, Z, X) = T k,i,j(Z, X, Y ),

T i,j,k(X, Y, Z) = T i,j,k(AX, AY, AZ).

If we let

Confk(Fn) = GL(n, C)\{(X1, . . . , Xk) | X1, . . . , Xk : generic},

T i,j,k are invariants of Conf3(Fn). Moreover,

Theorem (Fock-Goncharov)

A point of Conf3(Fn) is completely determined by the (n−1)(n−2)
2

triple ratios.

We will give a sketch of a proof.
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Prop 1

Let (X, Y, Z) be a generic triple of Fn. Then there exists a

unique A ∈ GL(n, C) and upper triangular matrices B1, B2, B3

up to scalar multiplication s.t.

AXB1 =


1 O

. . .
O 1

 , AY B2 =


O 1

. .
.

1 O

 ,

AZB3 =


1 0 · · · 0
1 1 O
... . . .
1 ∗ 1

 .

(Thus the lower triangular part of AZB3 gives a set of com-

plete invariants of the configuration of generic triples of flags.)
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Prop 2

The lower triangular part of AXB3 is uniquely determined by

the triple ratios T i,j,k(X, Y, Z)

From Prop 1 and 2, we obtain the Fock-Goncharov’s thm.

E.g. When n = 3, let T = T1,1,1(X, Y, Z), then

I3 =


1 0 0
0 1 0
0 0 1

 , C3 =


0 0 1
0 1 0
1 0 0

 ,


1 0 0
1 1 0
1 T + 1 1


When n = 4, let T ijk = T i,j,k(X, Y, Z), then

I4, C4,


1 0 0 0
1 1 0 0
1 T121 + 1 1 0
1 (T211 + 1)T121 + 1 (T112 + 1)T211 + 1 1

 .
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Actually we can construct A ∈ PGL in Prop 1 explicitly.

Lem For a generic triple of flags (X, Y, Z), there exists a unique

element A ∈ GL(n, C) such that

AX =


x′11 · · · x′1n

. . . ...
O x′nn

 , AY =


O y′1n

. .
.

...
y′n1 · · · y′nn

 , Az1 =


1
...
1

 .

Proof We need to find a matrix A = (aij) satisfying

ai1x
j
1 + ai2x

j
2 + · · ·+ ainxj

n = 0, (j < i)

ai1y
j
1 + ai2y

j
2 + · · ·+ ainyj

n = 0, (j < n− i + 1)

ai1z1
1 + ai2z1

2 + · · ·+ ainz1
n = 1.
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ai1x
j
1 + ai2x

j
2 + · · ·+ ainxj

n = 0, (j < i)
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j
1 + ai2y

j
2 + · · ·+ ainyj

n = 0, (j < n− i + 1)

ai1z1
1 + ai2z1
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This system of linear equations is equivalent to:

x1
1 . . . x1

n
... ...

xi−1
1 . . . xi−1

n
y1
1 . . . y1

n
... ...

yn−i
1 . . . yn−i

n
z1
1 . . . z1

n




ai1
...

ain

 =


0
...
0
1

 . (i = 1, . . . , n)

By genericity, the above n× n-matrix is invertible, thus there

exists a unique A ∈M(n, C). �
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Cor A Let X, Y ∈ Fn and z ∈ CPn−1 be a generic triple, and

X ′, Y ′ ∈ Fn and z′ ∈ CPn−1 another generic triple. Then there

exists a unique matrix A ∈ PGL(n, C) s.t.

AX = X ′, AY = Y ′, Az = z′.

Proof Since there exist unique A1 and A2 in PGL(n, C) s.t.

X −−→
A1

In←−−
A2

X ′, Y −−→
A1

Cn←−−
A2

Y ′, z −−→
A1


1
...
1

←−−
A2

z′.

Put A = A−1
2 A1. �

Cor B Let X, Y ∈ Fn and z ∈ CPn−1 be a generic triple. For

any (n−1)(n−2)
2 non-zero complex numbers {T i,j,k}, there exists

a unique Z ∈ Fn s.t. Z1 = z and T i,j,k(X, Y, Z) = T i,j,k.
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Definition of the edge function

X, Z ∈ AFn: affine flags, y, t ∈ Cn : vectors

(i− 1, n− i,1)

(i, n− i,0)
y t

(i, n− i− 1,1)

X

(i− 1, n− i,1)

(i, n− i− 1,1)

Z

We define the edge function for i = 1, . . . , n− 1

δi(X, y, Z, t) = −
∆i,n−i−1,1(X, Z, t)∆i−1,n−i,1(X, Z, y)

∆i−1,n−1,1(X, Z, t)∆i,n−i−1,1(X, Z, y)
.

This is well-defined for X, Z ∈ Fn and y, t ∈ CPn−1.
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For a quadruple X, Y, Z, T ∈ Fn, we simply denote

δi(X, Y, Z, T ) := δi(X, Y 1, Z, T1).

This satisfies

δi(AX, AY, AZ, AT ) = δi(X, Y, Z, T ).

Thus they are functions on Conf4(Fn).

For (X, Y, Z, T ), we have 2×(n−1)(n−2)
2 triple ratios from (X, Y, Z)

and (X, Z, T ) and (n− 1) edge functions.

Theorem (Fock-Goncharov)

These (n−1)(n−2)+(n−1) = (n−1)2 invariants completely

determine a point of Conf4(Fn).
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Lem C Let X, Z ∈ Fn and y ∈ CPn−1. For any d1, . . . , dn−1 ∈

C∗, there exits a unique t ∈ CPn−1 s.t.

δi(X, y, Z, t) = di. (i = 1, . . . , n− 1)

Proof By Cor A, we can assume that

X =


1 O

. . .
O 1

 , Z =


O 1

. .
.

1 O

 , y =


y1
...

yn

 .

Then

δi(X, y, Z, t) = −

∣∣∣∣∣∣∣∣
Ii O ...
O O ti+1
O Cn−i−1

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
Ii−1 O ...
O O yi
O Cn−i

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Ii−1 O ...
O O ti
O Cn−i

...

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
Ii O ...
O O yi+1
O Cn−i−1

...

∣∣∣∣∣∣∣∣
= −

ti+1

ti
·

yi

yi+1

Thus t ∈ CPn−1 is uniquely determined by δ1, . . . , δn−1. �
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When n = 2, if we regard [y1 : y2] ∈ CP1 as y = y1/y2 ∈ C∪{∞}

we have the following picture:

Z1 = 0t = −dy y

X1 =∞

δ1(X, y, Z, t) = −
y2

y1
·
t1
t2

∴ t = −dy

where d = δ1(X, y, Z, t).
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Parametrization of reps of π1(S)

S : a bordered surface, T : an ideal triangulation of S

For each triangle of T , assign (n−1)(n−2)
2 complex numbers

corresponding to the triple ratios.

For each edge of T , assign (n − 1) complex numbers corre-

sponding to the edge functions.

Using Cor B and Lem C, we can construct a developing map

∂∞T̃ → Fn from these parameters as follows.

(T̃ is the triangulation lifted from T to the universal cover S̃

and ∂∞T̃ is its ideal boundary.)
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Construction of the developing map

X4

FnX0

X1 X1
2

X5X3

Take X0, X1 ∈ Fn and X1
2 ∈ CPn−1

arbitrarily.

Cor A Let X, Y ∈ Fn and z ∈ CPn−1 be a generic triple, and

X ′, Y ′ ∈ Fn and z′ ∈ CPn−1 another generic triple. Then there

exists a unique matrix A ∈ PGL(n, C) s.t.

AX = X ′, AY = Y ′, Az = z′
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Construction of the developing map

X2

FnX0

X1

X5X3

X4

Lift X1
2 ∈ CPn−1 to X2 ∈ Fn by Cor

B according to the triple ratio pa-

rameters.

(Cor B Let X, Y ∈ Fn and z ∈ CPn−1 be a generic triple. For

any (n−1)(n−2)
2 non-zero complex numbers {T i,j,k}, there exists

a unique Z ∈ Fn s.t. Z1 = z and T i,j,k(X, Y, Z) = T i,j,k.)

none

19-a



Construction of the developing map

X1
5

FnX0

X1

X1
3

X1
4

X2

Define X1
3 , X1

4 , X1
5 ∈ CPn−1 by Lem

C according to the edge functions.

(Lem C Let X, Z ∈ Fn and y ∈ CPn−1. For any d1, . . . , dn−1 ∈

C∗, there exits a unique t ∈ CPn−1 s.t.

δi(X, y, Z, t) = di. (i = 1, . . . , n− 1) )

none
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Construction of the developing map

X4

FnX0

X1 X2

X3 X5

Lift X1
3 , X1

4 , X1
5 ∈ CPn−1 to

X3, X4, X5 ∈ Fn by Cor B according

to the triple ratios.

(Cor B Let X, Y ∈ Fn and z ∈ CPn−1 be a generic triple. For

any (n−1)(n−2)
2 non-zero complex numbers {T i,j,k}, there exists

a unique Z ∈ Fn s.t. Z1 = z and T i,j,k(X, Y, Z) = T i,j,k.)

none
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Construction of the developing map

X4

FnX0

X1 X2

X5X3

Iterate these procedures, we obtain

a developing map ∂∞T̃ → Fn.

Cor A Let X, Y ∈ Fn and z ∈ CPn−1 be a generic triple, and

X ′, Y ′ ∈ Fn and z′ ∈ CPn−1 another generic triple. Then there

exists a unique matrix A ∈ PGL(n, C) s.t.

AX = X ′, AY = Y ′, Az = z′
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Construction of the developing map

X4

FnX0

X1 X2

X5X3
By Cor A, we can also obtain a rep-

resentation π1(S) → PGL(n, C) ex-

plicitly.

(Cor A Let X, Y ∈ Fn and z ∈ CPn−1 be a generic triple, and

X ′, Y ′ ∈ Fn and z′ ∈ CPn−1 another generic triple. Then there

exists a unique matrix A ∈ PGL(n, C) s.t.

AX = X ′, AY = Y ′, Az = z′.)
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In particular, representations of the π1 of a pair of pants are

parametrized by 2×(n−1)(n−2)
2 +3×(n−1) = n2−1 parameters.

The remaining problem is how to glue the representations

along boundaries.

We can glue two representations along their boundaries iff

their monodromies along the boundaries are conjugate, in

other words, iff they have same eigenvalues.

We have to compute the eigenvalues of the monodromy along

a boundary curve from the triple ratios and edge functions.
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Computation of eigenvalues
P : a pair of pants

Fix γa, γb, γc ∈ π1(P ) as in the figure.

ρ : π1(P )→ GL(n, C) : a rep

ea,1, . . . , ea,n : the eigenvalues of ρ(γa)

γc∗

γa

γb

Assume that ea,i’s are distinct.

vi
a : the eigenvector corresponding to ea,i

Similarly, define eb,i, vi
b, etc.

Let Xi
a = spanC{v1

a , . . . , vi
a}.

This defines a flag Xa = {X1
a ( X2

a ( · · · ( Xn
a }.

Define Xb and Xc similarly. By definition,

ρ(γa)Xa = Xa, ρ(γb)Xb = Xb, ρ(γc)Xc = Xc.
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Define

Xa′ = ρ(γc)Xa, Xb′ = ρ(γa)Xb, Xc′ = ρ(γb)Xc.

Xb Xc

Xc′ Xb′

Xa′

Xa Fn

ρ(γc)

ρ(γa)

ρ(γb)

We have ρ(γa)Xc′ = ρ(γa)ρ(γb)Xc = ρ(γc
−1)Xc = Xc.

Similarly ρ(γb)Xa′ = Xa and ρ(γc)Xb′ = Xb.
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We have
ρ(γa)(Xa, Xc′, Xb) = (Xa, Xc, Xb′),

ρ(γb)(Xa′, Xc, Xb) = (Xa, Xc′, Xb),

ρ(γc)(Xa, Xc, Xb′) = (Xa′, Xc, Xb).

Thus these triples are in the same

GL(n, C)-orbit. Thus they have same

triple ratios.

Xb Xc

Xc′ Xb′

Xa′

Xa Fn

ρ(γc)

ρ(γa)

ρ(γb)

We assume that (Xa, Xb, Xc) and (Xa, Xc′, Xb) are generic triples.
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We define the triple ratio parameters by

T
i,j,k
a,b,c := T i,j,k(Xa, Xb, Xc),

U
i,j,k
a,c,b := T i,j,k(Xa, Xc′, Xb).

and the edge functions

δi
a,b := δi(Xa, X1

c , Xb, X
1
c′)

δi
b,c := δi(Xb, X

1
a , Xc, X

1
a′)

δi
c,a := δi(Xc, X

1
b , Xa, X1

b′)

Xb Xc

Xc′ Xb′

Xa′

Xa Fn

ρ(γc)

ρ(γa)

ρ(γb)

We use the following notation:

T
i,j,k
a,b,c = T

j,k,i
b,c,a = T

k,i,j
c,a,b , U

i,j,k
a,c,b = U

j,k,i
c,b,a = U

k,i,j
b,a,c, δi

b,a = δn−i
a,b .
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Thm

We have
ea,i+1

ea,i
= δi

a,bδ
i
a,c

n−1−i∏
l=1

T
i,l,n−i−l
a,b,c U

i,l,n−i−l
a,c,b ,

for i = 1, . . . , n− 1.

The right hand side is the product of the triple ratios and the

edge functions on the red line.

X̃c

X̃a X̃b′X̃c′

(i + 1,0, n− i− 1)
(i,0, n− i)

X̃b

25



Sketch of proof

We fix a lift X̃a ∈ AFn of Xa. (Fix X̃b and X̃c similarly).

For 0 ≤ i, j, k ≤ n satisfying i + j + k = n, we denote

∆i,j,k
a,c′,b = det(X̃i

aX̃
j
c′X̃

k
b ), ∆i,j,k

a,c,b′ = det(X̃i
aX̃k

c X̃
j
b′), etc.

Consider the product of the triple ratios and the edge func-

tions corresponding to the vertices on the red line. These are

written in terms of ∆i,j,k
∗,∗,∗, and most of them cancel out:

δi
a,bδ

i
a,c

n−1−i∏
l=1

T
i,l,n−i−l
a,b,c U

i,l,n−i−l
a,c,b

=
∆i+1,0,n−i−1

ac′b ∆i−1,1,n−i
ac′b

∆i,0,n−i
ac′b ∆i,1,n−i−1

ac′b

∆i,0,n−i
acb′ ∆i,1,n−i−1

acb′

∆i+1,0,n−i−1
acb′ ∆i−1,1,n−i

acb′
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On the other hand, we have

det ρ(γa) · det(X̃i
aX̃

j
c′X̃

k
b ) = det((ρ(γa)X̃a)

i(ρ(γa)X̃c′)
j(ρ(γa)X̃b)

k)

=
ea,1 · · · ea,i

ec,1 · · · ec,j
det(X̃i

aX̃j
cX̃k

b′).

Thus we have

∆i+1,0,n−i−1
ac′b ∆i−1,1,n−i

ac′b

∆i,0,n−i
ac′b ∆i,1,n−i−1

ac′b

=
ea,i+1

ea,i

∆i+1,0,n−i−1
acb′ ∆i−1,1,n−i

acb′

∆i,0,n−i
acb′ ∆i,1,n−i−1

acb′
.

Therefore

δi
a,bδ

i
a,c

n−1−i∏
l=1

T
i,l,n−i−l
a,b,c U

i,l,n−i−l
a,c,b

=
∆i+1,0,n−i−1

ac′b ∆i−1,1,n−i
ac′b

∆i,0,n−i
ac′b ∆i,1,n−i−1

ac′b

·
∆i,0,n−i

acb′ ∆i,1,n−i−1
acb′

∆i+1,0,n−i−1
acb′ ∆i−1,1,n−i

acb′

=
ea,i+1

ea,i
. �
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Twist parameters

Let S = P ∪ P ′ be a four-holed sphere. We fix a

system of generators γa, γb, γc, γd, γe ∈ π1(S) as in

the figure. Let ρ : π1(S)→ PGL(n, C).

γa

γd

γb

γe

γc

We need to assume some genericity conditions but I omit them

here. Let v1
a , . . . , vn

a be the eigenvectors of ρ(γa).

Define flags Xa and Ya by

Xk
a = spanC{v1

a , . . . , vk
a}, Y k

a = spanC{vn−k+1
a , . . . , vn

a}.

We have ρ(γa)Xa = Xa and ρ(γa)Ya = Ya.

By assumption, (Xa, Ya, X1
b ) and (Xa, Ya, X1

e ) are generic. Thus

we can define the twist parameters along γa by

δi(Xa, X1
b , Ya, X1

e ) (i = 1, . . . , n− 1).
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The twist parameter δi(Xa, X1
b , Ya, X1

e )

describes the relative position of the two

developing maps.

Ya

Fn

Xc

Xa

Xb

XdXe

Combining with the triple ratio parameters and the edge func-

tions from two pairs of pants, we can construct a developing

map for S, and thus a PGL(n, C)-representation.
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F-N coordinates of PGL(n, C)-representations

S : closed, genus g > 1, C : a pants decomposition of S

For each pair of pants S \ C, we assign

• 2× (n−1)(n−2)
2 triple ratio parameters, and

• 3× (n− 1) edge function parameters.

For each pants curve, we assign

• (n− 1) twist parameters.
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For each pants curve of C, we have to impose (n−1) relations

to have same eigenvalues up to scalar. These relations are

explicitly given by Thm:

ea,i+1

ea,i
= δi

a,bδ
i
a,c

n−1−i∏
l=1

T
i,l,n−i−l
a,b,c U

i,l,n−i−l
a,c,b ,

Thus we have

• (2g−2)((n−1)(n−2)+3(n−1))+(3g−3)(n−1) parameters

• (3g − 3)(n− 1) relations

Thus some subset of the PGL(n, C)-character variety can be

parametrized by (2g − 2)(n2 − 1) dimensional space.
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Thank you for your attention.
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