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Outline

The shape of the set of discrete faithful representations in the

character variety is very complicated.

In this talk, we study and visualize the shape using bending

deformation in an explicit way.
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Basics on 3-dim hyperbolic geometry

H3 = {(x, y, t) | t > 0} : the hyperbolic space

with metric ds2 = dx2+dy2+dt2

t2
. K ≡ −1 and complete.

As the one-point compactification of {t = 0}, CP1 = C ∪ {∞}

can be regarded as the ideal boundary of H3.

PSL(2, C) = SL(2, C)/{±1} acting on CP1 by
⎛

⎝a b
c d

⎞

⎠ · z =
az + b

cz + d
.

The action extends to the interior H3 as an isometry.

Moreover, Isom+(H3) ∼= PSL(2, C).
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Basics on 3-dim hyperbolic geometry

A geodesic in H3 is

• a line perpendicular to C, or

• a (half) circle orthogonal to C

A totally geodesic surface in H3 is

• a hemisphere orthogonal to C, or

• a vertical plane orthogonal to C
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Isometries of H3

A non-trivial element in A ∈ PSL(2, C) is conjugate to

•
⎛

⎝α 0
0 α−1

⎞

⎠ (⇔ A has exactly two fixed points on CP1), or

•
⎛

⎝1 1
0 1

⎞

⎠ (⇔ A has exactly one fixed point on CP1).

It acts on CP1 as z (→ α2 · z, respectively z (→ z + 1.

The latter case is called parabolic. The first case is further

classified into

elliptic |α| = 1 (A has a fixed point in H3),

hyperbolic |α| ̸= 1 and α is real,

loxodromic |α| ̸= 1 and α is not real.
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Hyperbolic transformation z (→ α2 · z (α > 1)

21 α

Dilation

6



Loxodromic transformation z (→ α2 · z (|α| > 1)

2

1

α

Dilation and rotation
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Parabolic transformation z (→ z + 1

Translation
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Complex length of an element of PSL(2, C)
Let λ = l + a

√
−1 where l ∈ R≥0

and a ∈ (−π, π]. Then

A =

⎛

⎝exp(λ/2) 0
0 exp(−λ/2)

⎞

⎠

(acts on CP1 as z (→ exp(λ) · z )

preserves the axis (0,∞). The

(hyperbolic) translation distance

is l and the angle of rotation is a.

z
l

a

invariant axis

z

e λ

λ = l + a
√
−1 is called the complex length of A.

We have tr(A) = ±2 · cosh(λ/2).
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Basics on Kleinian groups

Γ < PSL(2, C) : discrete subgroup (finitely generated)

If Γ is torsion-free, H3/Γ is a hyperbolic manifold. Let

Λ(Γ) = {limit points of Γ · x in CP1 for some x ∈ H3}.

In particular, Λ(Γ) ⊃ {fixed points of non-elliptic γ ∈ Γ}. Let

Ω(Γ) = CP1 \ Λ(Γ).

Γ acts on Ω(Γ) properly discontinuously.

In this talk, we assume that Γ is isomorphic to a surface group

π1(S) (or its quotient) for some hyperbolic surface S.
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Example: Fuchsian groups

A 2-dim hyperbolic surface is represented as H2/Γ by a discrete

subgroup Γ ⊂ PSL(2, R).

Γ = ⟨A, B⟩

punctured torus group

Since PSL(2, R) ⊂ PSL(2, C), the action of Γ on H2 extends

to H3.

11



Example: Fuchsian groups

Since PSL(2, R) ⊂ PSL(2, C), the action of Γ on H2 extends

to H3.

H2

In this case, the limit set is RP1 = R ∪ {∞} as above.
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Quasi-Fuchsian groups

We can deform a Fuchsian group a little bit in PSL(2, C).

The result dose not preserve H2 in general, and the limit set

RP1 ∼= S1 is distorted.

Let Γ ⊂ PSL(2, R) be a Fuchsian group and φ a quasi-conformal

homeomorphism of CP1. Then

{φ−1 ◦ γ ◦ φ | γ ∈ Γ}

is called a quasi-Fuchsian group.
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Quasi-Fuchsian groups

The limit set of a quasi-Fuchsian group is homeomorphic to

S1 and Ω consists of two disks Ω+ and Ω−. By uniformization

theorem, Ω± are conformal to the unit disk and Ω±/Γ give a

pair of points in the Teichmüller space T (S).

Moreover, by Bers’s simultaneous uniformization,

QF(S) := {quasi-Fuchsian groups} ∼= T (S) × T (S).
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Known facts

X(S) = Hom(π1(S),PSL(2, C))/ ∼conj. : the character variety

AH(S) = {discrete faithful reps}/ ∼conj.⊂ X(S)

AH(S) is the set of (marked) hyp structures on S × (−1,1).

• AH(S) is a closed subset in X(S)

• QF(S) ⊂ AH(S)

• QF(S) is an open subset in X(S)

• QF(S) = AH(S) (Density conjecture, now theorem)

Although QF(S) ∼= T (S) × T (S) is topologically a ball, the

shape of QF(S) in X(S) is very complicated.
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Complex Fenchel-Nielsen coordinates

A pair of pants P is a 3-holed sphere.

Since a right angled hexagon is determined by three alternating

side lengths, a hyp metric on P is determined by the lengths

l1, l2, l3 of the boundary curves.

l
l1

3 /2/2

/2

2l
3

l

l l

1

2

Similarly, a generic rep of π1(P ) → PSL(2, C) is determined by

three complex lengths λi = li + ai
√
−1.
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Complex Fenchel-Nielsen coordinates

Let S be a hyperbolic surface of genus g.

A pants decomposition is a set of simple closed curves on S

s.t. the complement consists of pairs of pants.

There are 3g −3 such scc’s. Denote the hyperbolic lengths of

these curves by li’s.

(λi = li + ai
√
−1 for PSL(2, C)-reps.)
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Complex Fenchel-Nielsen coordinates

The hyperbolic structures on S is determined by li’s and twist

parameters ti’s :

it

Thus we have

T (S) ∼= (R>0 × R)3g−3 ∋ (li, ti).

li and ti are called Fenchel-Nielsen coordinates.

Similarly, we can define the complex twist parameter

τi = ti + bi
√
−1 for a generic PSL(2, C)-rep of π1(S).
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Complex Fenchel-Nielsen coordinates

There are many subtleties about complex FN coordinates, at

least we have a rational map

C6g−6 → X(S)

for a fixed pants decomposition, and we can parametrize the

quasi-Fuchsian space QF(S).
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Complex Fenchel-Nielsen coordinates

It is much easier to make the right angled hexagons to ideal

triangles by spiraling the sides of the hexagons equivariantly,

since the ideal vertices on CP1, a real 2-dim object.
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a0 = 0.0 a0 = 0.5 a0 = 1.0

l1 = l2 = l3 = 1.0, and a2 = a3 = 0.0.

(Recall λi = li + ai
√
−1 is the complex length.)
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A deformation by the twist parameter can be seen as :

If ai = 0 for all i, this is a ‘bending deformation’.
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Measured laminations

Fix a hyperbolic metric on S.

A closed subset L on S foliated by geodesics is called a geodesic

lamination.

A lamination with a homotopy invariant transverse measure µ

is called a measured lamination.

L

An easy example is a simple closed geodesic with a Dirac

measure.

It is known that every measured lamination is obtained as a

limit of such simple closed geodesics with Dirac measures.
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Bending deformation

We can identify the universal cover S̃ of S with a totally

geodesic surface in H3.

For a geodesic lamination (L, µ), we can ‘bend’ S̃ in H3.

Assume L is a simple closed curve. Let L̃ be the preimage of

L in the universal cover S̃.
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Bending deformation

Bend the disk

by the angle µ̃

−→

We call this procedure a bending deformation, and call the

map S̃ → H3 the developing map.

Since the construction is π1(S)-equivariant, we obtain a rep-

resentation π1(S) → PSL(2, C) from the developing map.
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From the bending construction, we obtain a PSL(2, C)-rep

from a hyp metric on S and a bending measure µ.

Since QF(S) is an open set containing all Fuchsian groups, a

small bending gives a quasi-Fuchsian group.

Question How much can we bend the surface within QF ?

In the complex FN coordinates

λi = li + ai
√
−1, τi = ti + bi

√
−1,

if ai = 0, the rep is obtained by the hyp surface determined

by (li, ti) bending along the pants curves by angles bi.
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Convex core

π1(S) ∼= Γ ⊂ PSL(2, C) : quasi-Fuchsian group

Λ(Γ) : limit set (⊂ CP1)

CH(Γ) : convex hull of Λ(Γ) in H3

The boundary of CH(Γ) consists of two

totally geodesic surfaces ∂±CH(Γ) bent

along measured laminations µ̃±. Denote

∂±C(Γ) = ∂±CH(Γ)/Γ and the induced

measured laminations by µ±.

Γ is uniquely determined by one of the

pairs (∂±C, µ±).

∂+

∂−

C

CC(Γ)

µ+

µ−

Question Can we describe (∂−C, µ−) in terms of (∂+C, µ+)?
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Since the dim of X(S) is greater than 1, it is natural to study

the slice fixing some of λi and τi.

We study the deformation space of τ1 fixing the other param-

eters.

Facts

When we change a PSL(2, C)-rep by the Dehn twist along i-th

pants curve, then

(λi, τi) (→ (λi, τi + λi)

So it is sufficient to study τ1 in the range 0 ≤ Re(τ1) ≤ l1 and

−π ≤ Im(τ1) ≤ π.
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Zero and half twist
For simplicity, we assume that C1 is on

the torus with boundary C2. (Ci means

the i-th pants curve.) We assume λ1 is

real and λi, τi are real for i ̸= 1.

1
C2

C

Prop • When τ1 = 0 + b1
√
−1, if

|b1| < 2arccos(
2 sinh(l1/2)

√
2cosh(l1) + 2cosh(l2/2)

),

then the rep is quasi-Fuchsian. The bending loci are C1(=

1/0) and 0/1.

• When τ1 = l1/2 + b1
√
−1, there is such a bound and the

bending loci are C1 and 1/2.

Remark The first statement was already proved by Parker-

Series for the once punctured tours case.
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Behavior near a cusp group

On the slice, a ‘cusp group’ has a cusp-like neighborhood (Miy-

achi). This phenomenon can be observed from the developing

maps:

A C
B
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Behavior near a cusp group

If we consider the once-punctured

torus group, the shape of QF in τ1-

plane has the shape as:

Picture produce by

Yamashita’s program

Parker-Parkkonen showed that we can take the red line in the

above picture within QF for once-punctured group case. A

similar statement holds in general case.
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