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Introduction
Dijkgraaf-Witten invariant
M : closed oriented 3-mfd, p: 7w (M) — G : homom.
Af:M— K(G,1) s.t. f. =p up to homotopy.
If |G| < oo, for c € H3(G; A) = H3(K(G, 1); A),
Y. (e fM]) € Z[A]
pm(M)—G

is an invariant of M.  (‘state sum invariant’)

For a knot K C S3, if we consider relative group cocycle,

we can define a variant of DW-invariant for 53\ N(K).
~+ state sum invariant of K

(Though there is no reference as far as | know.)
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Quandle : an algebraic object like a group

K : knot in S3,
G : group

A rep m(Ex) — G.

Ex = S3\ N(K) : knot complement

X : quandle
A coloring of K by X.
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G : group X : quandle

A rep m1(Ex) — G. A coloring of K by X.
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Introduction
Quandle : an algebraic object like a group
K : knotin 3, Ex = S3\ N(K) : knot complement

G : group X : quandle
A rep m1(Ex) — G. A coloring of K by X.

G < 00, c € HYGiA) __|X| < o0, c e H(X; A

> (. KIE]) € Z[A] > (e f(fund. cycle))

m1(Exk)—G colorings
‘Dijkgraaf-Witten inv.’ quandle cocycle inv.
Aim

Construct a quandle cocycle from a group cocycle.
Relate the associated quandle cocycle inv to DW-inv.
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Quandle

Definition

A quandle X is a set with % : X x X — X satisfying
(Q1) Vx e X, x*x = x.
(Q2) Yy € X, xy : x = x * y is a bijection.
(Q3) (x*xy)*xz=(x*x2)*x(y*2z) ("x,y,z € X)
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Quandle

Definition

A quandle X is a set with % : X x X — X satisfying
(Q1) Vx € X, x % x = x.
(Q2) Yy € X, xy : x = x * y is a bijection.
(Q3) (xxy)*xz=(x*x2)x(y*x2) ("x,y,z€ X)

Example (Conjugation quandle)

G : agroup, S C G : a subset closed under conjugation.
Define x xy =y 'xy (x,y € S). (S,*) is a quandle.
(Q1) and (Q2) are clearly satisfied, and we have

1

(x*xy)*z= Z_l(y_lxy)z = Z_ly_lzz_ xzz‘lyz

= (yxz) Y xx2)(y*xz) = (x* 2) * (y * 2).
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Quandle
Example (Dihedral quandle)

X=1Z/pZ (p > 3)
Fori,je X, let ixj=2j—i mod p.
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Quandle
Example (Dihedral quandle)

X =Z/pZ (p > 3)

Fori,je X, let ixj=2j—i mod p.
This is a conjugation quandle:
G=Dy={(r,x|r*=1,x"=1,x=x""r)

S={x'rx"|i=0,...,p—1} ‘reflection along i-axis’

(I rx (X ) (i rx ) = x¥ 7 rx (%)

(p=15)

2x1=0,
3x1=-1

6 /36



Quandle coloring

X : aquandle, L : an oriented link,
D(L) : a link projection

A quandle coloring is a map from ‘arcs’ of D(L) to X
satisfying the condition below at each crossing.

x*y




Quandle coloring

a,b,c,de X

cxa=d,

axc=bh,

a d

axb=d,

b . cxd=b.

x*y
— >




Quandle coloring

a,b,c,de X
cxa=4d,
axc=bh,
axb=d,
cxd=b.
x*y
—>
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a,b,c,de X
cxa=d,
axc=bh,
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— >




Quandle coloring

a,b,c,de X
cxa=d,
axc=bh,
axb=d,
cxd=b.
x*y

— >




Quandle coloring

The coloring does not depend on the projection D(L) :
There are 1:1 corre. of colorings under R moves.

X
Correspondence under Reidemeister |.
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Quandle coloring

The coloring does not depend on the projection D(L) :
There are 1:1 corre. of colorings under R moves.

©

st.z¥x=y
uniquely

X Ey

Correspondence under Reidemeister |l.




Quandle coloring

The coloring does not depend on the projection D(L) :
There are 1:1 corre. of colorings under R moves.

z Yo (XY oz y*ro (XF)¥(y*2)
Correspondence under Reidemeister ll.

36



Quandle coloring

If X is a conjugation quandle of a group G

(i.e. X C Gand xxy =y Ixy for x,y € X),
then a coloring by X gives a rep m1(S3\ L) — G.

AN

1
X¥y =y 'xy
Recall the Wirtinger

A

y presentation of 71(S3\ L).
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Quandle coloring

If X is a conjugation quandle of a group G
(i.e. X C Gand xxy =y Ixy for x,y € X),
then a coloring by X gives a rep m1(S3\ L) — G.

xty=yxy
N Recall the Wirtinger

| \ y presentation of 1 (S3\ L).

X

A quandle coloring by a 1.1 Arep m(S3\ L) = G
conjugation quandle — sending a meridian to an
X C G. element of X.

10/36



Group homology
For a group G, let
Ci(G) = SpanZ[G]{[g1| gl | & € G}.
(free Z[G]-module)
0 : Co(G) — C,_1(G) is defined by

Olgi| - - - gl = gilg2| - - - |gn]
n—1

+ Z(—l)i[g1| - |gigival - lgn] + (=1)"[g1] - - |lgn-1]-
For e;ample:
Alx|y] = x[y] — [xv] + [x],
Ixly|z] = x[y|z] — [xy|z] + [x|yz] — [x|y]-



Group homology
xy

Xy y %)/ N I[x|y] = x[y]—[xy]+[x]

1 X X ] x+
[xy
Z
—>
y
1

X
Iz] N
(xy)z=x(yz)
X
1 X ™~ [xly]

Olx|ylz] = x[y|z] = [xy|z] + [x]yz] = [x]y]

(It is easy to see that 0o d = 0.)



Group homology

M : a right Z[G]-module
Hn(G; M) := Hy(M ®z;6) C.(G)) group homology
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Quandle homology

Definition (Adjoint group)

For a quandle X, define the adjoint group by
Ad(X) = (xe X [xxy =yt x-y).

(also known as the associated group or enveloping group)
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Quandle homology

Definition (Adjoint group)

For a quandle X, define the adjoint group by
Ad(X) = (xe X [xxy =yt x-y).

(also known as the associated group or enveloping group)

Remark

For a Lie algebra L (a vector sp with [,]: V&® V — V),
the universal enveloping algebra is defined by

U(L) = (@ L®”> /{[vl, W=vi®v—1nQv}

n>0

Ad(X) satisfies some universal properties as U(L) does.

14 /36



Quandle homology

Lie algebra (co)homology is defined as the (co)homology
of the associative algebra U(L).

But quandle (co)homology is NOT isomorphic to the
(co)homology of the group Ad(X).
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Quandle homology
For a quandle X, let

Cf(X) = spanzad(x ]{(xl,- < X)) | xi € X
Define the boundary operator 9 : C*(X) — CR (X) by

n

6(X17”' 7Xn) :Z(—l)i{(X]_,"' 7)/(\1'7”. JXn)
i=1
— Xi(X1 % Xy X1 K Xiy X1, 5 Xn) }

For examples:
Ax,y) == ((y) —x(y)) + ((x) — y(x x y)),
a(Xayvz) :—((y7Z)—X(y7Z))—|—((X,Z)—y(X*y,Z))
— ((x,y) — z(x *x z, y * 2)).
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Quandle homology

9: CR(X) = CR(X)

x*y

X

y x*y Y
y —— y y
1 X ———1

X

Ix,y) = —(y) +x(y) + (x) = y(x*y)

(It is easy to check that 0o 9 = 0.)
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Quandle homology

9: CR(X) = CR(X)

Xty —
y @ y — Yy Ny
X x 1 ¥ o——
X
Ix,y) = +x(y) + (x) = y(x*y)

(It is easy to check that 0o 9 = 0.)
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Quandle homology

91 CR(X) — CR(X)

XXy oy —
y @ y — y %
* X ! X < 1
X
O(x,y) = —(y) + x(y)+(x)—y(x xy)

(It is easy to check that 0o 9 = 0.)
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Quandle homology
9 : CR(X) — CR(X)

y¥z,/ *
x*z
A —=
b 2
Jnmapees B %
2l s XYz Xy
AY y X y
1 1

a(X7y7Z) — —(y,Z)+X(y,Z)—|—(X,Z)—y(X*y,Z)
—(x,¥) + z(x*x z,y % 2)
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Quandle homology
0 : CR(X) — CR(X)

y*z/ *

5

A —

% Z

*< ******* Th
2 7y Yz y X yy

X ] f
X X
Nx,y,z) = +x(y,2) + (x,2) — y(x * y, 2)

—(x,y)+ z(x x z,y * 2)
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Quandle homology
9 CR(X) = CR(X)

8(X,y,Z):—(y,Z)+X(y,Z) —y(X*y,Z)
—(xy) +z(xx 2,y % 2)
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Quandle homology
9 : CR(X) — CR(X)

(x*y)*z
¥z *
X*z Y
A — =
Z Z
x*< """""
2| 19 Y|z $
X X ]
(x,y,2)

a(X7y7Z) — —(y,Z)+X(y,Z)—|—(X,Z)—y(X*y,Z)
+z(x*z,y % 2)
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Quandle homology

M : a right Z[Ad(X)]-module.

The homology group of
G (X; M) = M @zjaq00) G (X)
is called the rack homology HF(X; M).
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Quandle homology

M : a right Z[Ad(X)]-module.
The homology group of

G (X; M) = M @zjaq00) G (X)
is called the rack homology HF(X; M).

Then define a subcomplex CP(X) c CR(X), and define
the quandle homology by

CAX) == CX(X)/CP(X)
HY(X; M) == Hay(M @agx) C(X))
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Application to knot theory
L C S3: an (oriented) link
Fix a diagram D(L) (on S?).

A coloring by a quandle X gives a cycle in HZ(X; Z):

The cycle (x,z) + (z,y) + (v, x).
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Application to knot theory
L C S3: an (oriented) link
Fix a diagram D(L) (on S?).

A coloring by a quandle X gives a cycle in HZ(X; Z):

The cycle (x,z) + (z,y) + (v, x).

20 /36



This homology class in HY(X;Z) does not depend on
the choice of the diagram.

The invariance under Reidemeister Il move
y Z

// “
I~ #”\

z  y*z (x*y)*z y¥z (x*y)*z

(Coy) +y(x*y,2) + (v, 2)) = ((x,2) + x(y, 2) + 2(x * 2,y * 2))
= 8(X’yvz)
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(Untwisted) 2-cycle
Roughly, the 2-cycle associated to a coloring measures
the longitudinal holonomy (Eisermann).
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(Untwisted) 2-cycle
Roughly, the 2-cycle associated to a coloring measures
the longitudinal holonomy (Eisermann).

C
~
K Given a knot with an
b a arc coloring.
\\>
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(Untwisted) 2-cycle
Roughly, the 2-cycle associated to a coloring measures
the longitudinal holonomy (Eisermann).

Subdivide 52 into
a squares, they form a
2-cycle.
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(Untwisted) 2-cycle
Roughly, the 2-cycle associated to a coloring measures
the longitudinal holonomy (Eisermann).

C

LV

d

a | Rearrange the 2-cycle
d a so that the squares
p | form a torus.




(Untwisted) 2-cycle
Roughly, the 2-cycle associated to a coloring measures
the longitudinal holonomy (Eisermann).

C

LY

d

a | Rearrange the 2-cycle
d a so that the squares
p | form a torus.




(Untwisted) 2-cycle

Roughly, the 2-cycle associated to a coloring measures
the longitudinal holonomy (Eisermann).

I
c b
d
¢ Rearrange the 2-cycle
d 9 so that the squares
¢ a form a torus.
b
"




(Untwisted) 2-cycle

Roughly, the 2-cycle associated to a coloring measures
the longitudinal holonomy (Eisermann).

C

Rearrange the 2-cycle
so that the squares
form a torus.
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Roughly, the 2-cycle associated to a coloring measures
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Rearrange the 2-cycle
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(Untwisted) 2-cycle

Roughly, the 2-cycle associated to a coloring measures
the longitudinal holonomy (Eisermann).

C

Rearrange the 2-cycle
so that the squares
form a torus.

Rmk The vertical
line corresponds to
the longitude (black-
board framing).
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(Untwisted) 2-cycle
Roughly, the 2-cycle associated to a coloring measures
the longitudinal holonomy (Eisermann).

C

Rearrange the 2-cycle
so that the squares
form a torus.

Rmk The vertical
line corresponds to
the longitude (black-
board framing).

a

C
Refer to [Eisermann, Pacific J. 2007] for details.
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Region coloring
L C S3: oriented link, D(L) : a diagram as before

Fix a coloring of arcs by X.

A region coloring is a map from ‘regions’ of D(L) to X
satisfying the condition:
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Region coloring
L C S3: oriented link, D(L) : a diagram as before

Fix a coloring of arcs by X.

A region coloring is a map from ‘regions’ of D(L) to X

satisfying the condition: Xty
(r¥x)*y
iy =(rex)*(x*y)| r¥y
A 0
X Y
’ r*x r
X

This is consistent with the arc coloring.



Region coloring

The pair, arc and region colorings gives a ‘twisted’ cycle :

re(x,z)+re(z,y)+re(y,x) € ZIX] ®@aqx) G (X).
Here, Z[X] = span; X is a right Ad(X)-module by

r-(axa-ooxp) = (- (rxxy)*xx) ) * X,
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Region coloring

The pair, arc and region colorings gives a ‘twisted’ cycle :

re(x,z)+re(z,y)+ro(y,x) € ZIX] ®@aqx) C(X).
Here, Z[X] = span; X is a right Ad(X)-module by

r-(axa-ooxp) = (- (rxxy)*xx) ) * X,



Region coloring

Prop (see [A.Inoue-K.])

The (twisted) homology class in H¥(X; Z[X]) does not
depend on the choice of the region coloring (undear a
mild assumption onX).

We remark that

Hié (X3 Z) 2= HE (X ZIX)).
via (r,x, - ,xk) = (=D r@ (x, -, xk).
(There is a homom H,?H(X; 7) — HY(X; Z[X]).)
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Hz (X)

For a quandle X, let
CA(X) =spany{(xo, - ,xa) | x; € X}. X,
Define 0 : CA(X) — C2,(X) by Xo

Xg

n

O(x0, - %) = > (=1)(x0,+ K+, Xn)-

i=0
Since Ad(X) acts on X from the right, C2(X) is a right
Z[Ad(X)]-module.

Def (‘Simplicial quandle homology’, A.Inoue-K.)
H (X) == Ha( C2(X) @agx) Z)
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it HE (X ZIX]) — Hixa(X)
We define a chain map
¢ ZIX] Q) CH(X) = Cra(X) Q) Z
Ad(X) Ad(X)
as follows.



ox t HY (X ZIX]) — Hps(X)

We define a chain map

¢ ZIX] Q) CR(X) = GRa(X) Q) Z

Ad(X) Ad(X)
as follows.
Fixpe X. L,={¢:{1,2,---,n} - {0,1} }.
Forvel,, | = {k|(k): 1<k <n}.
o(r® (X17X2a Xn))
= Z Py () x(6,1), x(2,2), -+, x(¢, n)).
where r(1) = r x (x1 XA L(”)) and

x(1, 1) = x; % (x4 ,‘i’;” Xy,



it HE (X ZIX]) — Hixa(X)
We define a chain map
¢ ZIX] Q) CH(X) = Cra(X) Q) Z
Ad(X) Ad(X)
as follows.

Fixpe X. IL,={c:{1,2,---,n} —{0,1} }.
Forvel,, |o|=#{k|uk)=1,1<k<n}.

gp(r ® (X17X2a U Xn))

_Z l’ 1) ([’ 2)7 7X(l’> n))
where r(1) = r x (x1 X x,,(”)) and
X(L’ I) = x; * (XIL—E_I;-].)XIL—("_Ig-z) X”;(n))

The pictorial definition is as follows:



o Z[X] QAd(X) CzR(X) — C3A(X) Rad(x) L

r¥(xy) xty r¥y r¥(xy) x*y r¥y

ry peX :fix
r,x,yeX

Q(rX(x,y) ) =(p,r,x,y)—(p, r*x, x, y)
—(p, r¥y, X%y, y)+(p, r¥(xy), x*y, y)
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= Inoue-K.].
¢ is actually a chain map (0o ¢ = pod) [A.ln
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= A.Inoue-K ].
¢ is actually a chain map (Do =pod) |

p cancel P

29 /36



The definition of ¢ is motivated by a triangulation of
S3\ K near a crossing.

N | /
N [
N \
N N
~ N
A
Sy

r~r¥x ~r¥y ~r¥(xy)
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N \
N N
[N
<~
S

r~r¥x ~r¥y ~r¥(xy)
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The definition of ¢ is motivated by a triangulation of
S3\ K near a crossing.

p p
y y
x*y
rH(xy)
r¥y
p
‘ y
r¥x r
X

/
N /
~ /

r~71¥x ~r¥y ~r¥(xy)
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The definition of ¢ is motivated by a triangulation of
S3\ K near a crossing.

. (A

N

N N
<N

r~r1¥x ~r¥y ~r¥(xy)
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The definition of ¢ is motivated by a triangulation of
S3\ K near a crossing.

SN
N NS
Sooov
/
SNy
SN
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The definition of ¢ is motivated by a triangulation of
S3\ K near a crossing.

' 4
. . 4
S L
. L /
R 4
o,

r~r¥x~r¥y ~r¥xy)

30/36



The map ¢ induces a homomorphism
Ho1 (X3 Z) = Hy (X ZIX]) = Hopa (X).

We can construct a quandle cocycle from a cocycle of
HA(X), that is f : X¥™1 — A (abelian gp) satisfying

1) Zi(_l)if(XOa”' 7)/(\1'7"' 7Xk—|—1) — O,
2) fxoxy, -, xkxy)=f(xo, -, ),
3) f(xo, -+ ,xk) =0 if x; = x;41 for some i.

(
(
(
The pull-back of f is a cocycle of HY(X; Z).
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Dihedral quandle X = Z/pZ

Define d : X? — Z/pZ by
1 ify+z>p
dly,z)=< -1 ify+z<pandyz#0
0  otherwise

where X is an integer 0 < X < p with x =X mod p.
Then [x|y|z] — x - d(y, z) is a group 3-cocycle of Z/pZ.
In the "homogeneous notation’,
0, x, x+y, x+y+2z)—x-d(y,2z)
This satisfies (1) and (3). To satisfy (2) we consider
0, x,x+y,x+y+2z)—»x-d(y,z) —x-d(-y,—2)
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Dihedral quandle X = Z/pZ

Apply ¢, we obtain
(%,3,2) B(0,%,,2) — (0,x %, ,2)
—(0,x*xz,yxz,z)+ (0,(x*xy) *x z,y * z, )
—x-dly —x,z—y)—xxy-dly —x*xy,z—y)
—xxz-dlyxz—x%xz,z—y*2)
+(xxy)xz-dlyxz—(xxy)xz,z—yx2)
=2z(d(y —x,z—y)+d(y — x,y — 2)).
(Recall x xy =2y — x.)
Theorem (K.)

This is a non-trivial 3-cocycle.
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Complex volume

H? : hyperbolic 3-space.
Isom™ (H3) = PSL,C = SL,C/{#1}

P ={g! <é 1) g | g € PSL,C} : parabolic elements

P is closed under conjugation, thus has a quandle
structure defined by x x y = y~!xy.

P = {<(1) i) | z € C*} : a parabolic subgroup

We have P = P\PSL,C by g! ((1) 1) g+— Pg.
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Complex volume

Since P = P\PSL,C, we can regard H2(P) as the
Hochschild relative homology H([G : P]; Z).

Thm (Arciniega-Nevérez and Cisneros-Molina,
arXiv:1303.2986)

H«([G : P]; Z) is isomorphic to the Takasu relative
homology Hi(G, P;Z) (usual relative group homology).
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Since P = P\PSL,C, we can regard H2(P) as the
Hochschild relative homology H([G : P]; Z).

Thm (Arciniega-Nevarez and Cisneros-Molina,
arXiv:1303.2986)

H«([G : P]; Z) is isomorphic to the Takasu relative
homology Hi(G, P;Z) (usual relative group homology).

Zickert constructed
LoV : Hy(G,P;Z) — B(C) = C/n°Z
which gives i(Vol 4 iCS). Thus we obtain a map
H3 (P; Z[P]) — H5'(P) = Hs(G, P; Z) — C/xZ.
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Complex volume

For a hyperbolic knot K, we have a coloring by P
corresponding to the discrete faithful representation.
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Complex volume

For a hyperbolic knot K, we have a coloring by P
corresponding to the discrete faithful representation.

This gives a (twisted) 2-cycle in HZ(P; Z[P]).
By construction, the image of this 2-cycle by

HY(P; Z[P]) — HE(P) = H3(G, P; Z) — C/n°Z.
computes i(Vol(S3\ K) +iCS(S3\ K)).

In [A.Inoue-K.], we gave a more explicit description.
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