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QOutline

S : once punctured torus
o C S : essential simple closed curve

QF(S) ={p: m(S) — PSL,C |
injective, p(m1(S)) quasi-Fuchsian}/ ~ o).

Ao @ QF(S) — C/2m\/—17Z : the (complex) length of «
For ¢ > 0, consider a slice of QF(S)
QF(6) ={p € QF(S) | Aalp) = {}.
This can be regarded as a subset of
{reC|—7m<Im(r) <7}

2/29



QOutline

QF (¢) looks like this:

3

2

1

29



QOutline

QF (¢) looks like this:

3

2

1

29



QOutline

QF (¢) looks like this:

3

2

1

29



QOutline

QF (¢) looks like this:

3

2

1

29



QOutline

QF (¢) looks like this:

3




QOutline

QF (¢) looks like this:

3




Outline
QF (¢) looks like this:

f/ \\

2 | - ~

29



Outline
QF (¢) looks like this:

SN AN

3
2
1
0
1
2
3




Outline
QF (¢) looks like this:

3




QOutline

QF (¢) looks like this:

3

2

1

0

29



Outline
QF (¢) looks like this:




Outline
QF (¢) looks like this:

3 g

N

2

1 ]

0

_‘] ]

NN |

3 A . \\ rd . \\A
5 4 0 5




Outline
QF (¢) looks like this:

3

2 |

-

1

0

o
/‘\

d

29



QOutline

QF (¢) looks like this:

3

29



QOutline

QF (¢) looks like this:

3

29



Outline
QF (¢) looks like this:

3 ‘ ‘ ‘
// N \\\
2 v N
1. R .
N
0 v
7
RN K
g /
2 ’ 4
~ /-‘/ ”
3 Sl ~~
6 4 2 0 )




Outline
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Interested in the shape of QF({) as ¢ getting longer.
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1. Basics on Kleinian (once punctured torus) groups
2. Linear slices & Main theorem

3. Complex projective structures and complex
earthquake

4. Proof of the main theorem

With many pictures ...
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Basics (Hyperbolic space)

M3 = {(z,t) | z€ C, t € Rop} : 3-dim hyperbolic space
{t =0} = CU{oo} = CP! : its boundary

PSL,C = SL,C/{+1} acts on CP! by

a b az+ b

This action extends to the interior H® isometrically.
[ < PSL,C : torsion free discrete subgroup

= M = H3/T is a complete hyperbolic 3-manifold
s.t. 7T1(M) =T
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Basics (Deformation space)

S =S, genus g, n punctured surface (x(S) < 0)
X(S) ={p: m(S) — PSL,C |
irreducible, preserving parabolics}/ ~con;.
. the character variety
AH(S) = {[p] € X(S) | faithful, discrete image}

If p € AH(S), then H?/p(71(S)) is a complete
hyperbolic 3-manifold homotopy equivalent to S.

AH(S) is the deformation space of such structures.
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Fix a point p € H3. The limit set of I is defined by
A(T) = {accumulation points of I - p on CP'}.

(A(T) € CPL, not depend on the choice of p)



Basics (Limit sets)

[ < PSL,C : discrete subgroup

Fix a point p € H3. The limit set of I is defined by
A(T) = {accumulation points of I - p on CP'}.

(A(T) € CPL, not depend on the choice of p)

Example (Fuchsian groups) - “H
If I < PSLy(R), T preserves
H?(c H3), thus A(T") is a subset
of RU {00} (a ‘round circle’ in
CPY).

limit set

29
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Basics (Quasi-Fuchsian representations)

We can deform a Fuchsian rep a little in PSL,C. The
limit set is no longer a round circle, but may be = St

Definition
Let p € AH(S). If the limit set A(p(71(S))) is
homeomorphic to S!, p is called quasi-Fuchsian.

QF(S) = {p € AH(S) | p is quasi-Fuchsian.}
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Basics (Known properties)

Known facts
@ QF(S) C X(S) open subset
o QF(S) = T(S) x T(S), where T(S) is the
Teichmiiller space of S. (T(S,.,) = Ro%&~6+2m)
@ QF(S) = AH(S) : density theorem
@ AH(S) is parametrized by its end invariants (Ending
Lamination Theorem).

But the shape of QF(S) in X(S) is very complicated!
(e.g. self-bumping, AH(S) is not locally connected.)



Basics (Complex length)

For v € m1(S), p € X(S), p(7) acts on H3.
Define the (complex) length by
Ay (p) = (translation length of p(v))

+ v/ —1 (rotation angle of p(7))
mod 27/ —17Z. This is characterized by

tr(p()) = 2cosh( 1)

10/29
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Fix o, 5 € m1(S) so that [, f]
is peripheral.
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Character variety

S = 511 : once punctured torus
Fix o, 5 € m1(S) so that [, f]
is peripheral.

The SL,C-character variety Xs.(S) is defined similarly as
PSL,C case. As affine varieties, we have

Xs.(S) =2 {(x,y,2) € C | x>+ y* + 2° = xyz}
via

[p] = (tr(p(c)), tr(p(B)), tr(p(af))).
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Character variety

S = 511 : once punctured torus
Fix o, 5 € m1(S) so that [, f]
is peripheral.

The SL,C-character variety Xs.(S) is defined similarly as
PSL,C case. As affine varieties, we have

Xs1(S) 2 {(x,y,2) €C | x* + y* + 2* = xyz}
[o] = (tr(p(a)), tr(p(B)), tr(p(a)))-

X(S) is obtained as a quotient of Xs;(S) by the action
of Z /27 generated by

(X,y,Z):(—X, _y72)7 (X,y,Z):(X,—y,—Z).
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Linear slices
Any essential simple closed curve on

S = 511 is represented by a primi-
tive element p[a]+q[5] € Hi(S; Z).
Regard it as p/q € QU {o0}.
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Linear slices
Any essential simple closed curve on

S = 511 is represented by a primi-
tive element p[a]+q[5] € Hi(S; Z).
Regard it as p/q € QU {o0}.

For p/q, take 7,/q € m1(S) freely homotopic to p/q.

Define the length function A,/ : X(S) — C/27v/—1Z
by )‘p/q(P) = )‘vp/q(P)-

Definition
For ¢ > 0, let

X(£) ={p € X(5) | Ayolp) = €}

X(¢) is a slice of X(S) on which (cpx length of o) = ¢,




Complex Fenchel-Nielsen coordinates
For ¢ > 0, define a map

{(reC|—7m<Im(r) <7} — X(0)
by

2cosh(7/2) 2cosh((r +¢)/2)
7 > (2cosh(¢/2), tanh(¢/2) ©  tanh(¢/2) )

This gives a bijection. (Recall tr p(a) = 2 cosh(A10/2).)
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Complex Fenchel-Nielsen coordinates
For ¢ > 0, define a map

{(reC|—7m<Im(r) <7} — X(0)
by

2cosh(7/2) 2cosh((r +¢)/2)
7 > (2cosh(¢/2), tanh(¢/2) ©  tanh(¢/2) )

This gives a bijection. (Recall tr p(a) = 2 cosh(A10/2).)

Note

If we let 7 = t + +/—1b,
t is the twisting distance
and b is the bending angle
along a.
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Linear slices of QF(S)
Definition
For ¢ > 0, define

QF(¢) = QF(S) N X(¢)

3
2
1
0
1
2
3

6 4 2 0 P 4 5

QF(2.6) C X(2.0) (black region)
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Definition

For ¢ > 0, define
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Linear slices of QF(S)
Definition
For ¢ > 0, define

QF(¢) = QF(S) N X(¢)
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QF(4.6) C X(4.0) (black region)
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Linear slices of QF(S)
Definition
For ¢ > 0, define

QF(¢) = QF(S) N X(¢)

& ) EN o = N w

6 4 2 0 P 4 5

QF(5.6) C X(5.0) (black region)
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Linear slices of QF(S)

QF(2.0)

2
1
0

A

2

3

Facts
@ The Dehn twist along « acts on X(/) as

T+ 7+ (. (translation)
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QF(2.0)

2
1
0

A

2

3

Facts
@ The Dehn twist along « acts on X(/) as

T+ 7+ (. (translation)

@ The real line {7 | Im(7) = 0} corresponds to the
Fuchsian representations satisfying \, = /.

@ By McMullen's disk convexity of QF(S),
QF(¢) is a union of (open) disks.
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Linear slices of QF(S)

N 7N
- ~ - ~

QF(6.0)

[ N EN o - [N} w

Facts
@ The Dehn twist along « acts on X(/) as

T+ 7+ (. (translation)

@ The real line {7 | Im(7) = 0} corresponds to the
Fuchsian representations satisfying \, = /.

@ By McMullen's disk convexity of QF(S),
QF(¢) is a union of (open) disks.
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Linear slices of QF(S)

For any ¢/ > 0, there exists a unique standard component
containing Fuchsian representations. As pictures suggest;
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containing Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)

QF (¢) has only one component if ¢ is sufficiently small,
has more than one component if { is sufficiently large.
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Linear slices of QF(S)

For any ¢ > 0, there exists a unique standard component
containing Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)

QF (¢) has only one component if ¢ is sufficiently small,
has more than one component if { is sufficiently large.

QF(2.0) C QF(5.0)

Today, we will give another proof for the latter part, and
give refined results.
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More on QF(S)

The standard component was extensively studied by
Keen-Series, they called it the BM-slice (denote BM).

For p € QF(S), let pl*(p) € ML(S) be the bending
measures on the convex hull boundary.

Theorem (Keen-Series, 2004)
p € BM iff one of [pl*] coincides with o in PML(S).

Roughly, a representation in BM is obtained from a
Fuchsian one by bending along o continuously.

17/29



More on QF(S)

Recall 7 = (twisting dist.) + v/ —1(bending angle).

In the BM-slice of QF(2.0).
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Complex projective structures
S : surface (x(S) < 0)

Definition opl

A complex projective structure or @
CP*-structure on S is a geometric N PSL@C&
structure locally modelled on CP? @

with transition functions in PSL,C.
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Complex projective structures

S : surface (x(S) < 0)

Definition o op!

A complex projective structure or S @

CP'-structure on S is a geometric (g@ PSL<2,C9
structure locally modelled on CP? Y

with transition functions in PSL,C.
(If S has punctures, assume some boundary conditions.)
Example (Fuchsian uniformization)

A hyperbolic str on S gives an identification S~ H2
Since H? C CP?, this gives a CPl-str.

19/29



Complex projective structures

Similarly as Teichmiiller space, we can define P(S) the
set of marked CP!-structures on S.
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Complex projective structures

Similarly as Teichmiiller space, we can define P(S) the
set of marked CP!-structures on S.

By analytic continuation, we have a holonomy map
hol : P(S) — X(S).

U E p(Y) U
:\7

This is known to be a local homeomorphism.




Grafting

We can construct another CP!-str from a Fuchsian
uniformization.

X :ahypstronS, «oC X : asimple closed geodesic.
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In the universal cover X, the local picture looks like:



Grafting

We can construct another CPL-str from a Fuchsian
uniformization.

X :ahypstronS, «oC X : asimple closed geodesic.

Let Grp.o(X) be the CP!-str obtained
from X by inserting a height b annulus aa
along a.

In the universal cover X, the local picture looks like:

But there are infinitely many lifts of « - - -



Grafting
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Grafting

The grafting operation Grp., : T(S) — P(S) can be
generalized for measured laminations.

Theorem (Thurston, Kamishima-Tan)
Gr: ML(S) x T(S) — P(S)
(b, X) = Gry(X)

is a homeomorphism (Thurston coordinates).

22/29



CP*-structures with g-F holonomy

Qo = { marked CP*-strs with g-F holonomy and
injective developing maps } C P(S)
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CP*-structures with g-F holonomy

Qo = { marked CP!-strs with g-F holonomy and
injective developing maps } C P(S)

MLy(S) : the set of multicurves with integral weights.

For n € MLz(S), let Q, be the set of CP-strs
obtained from Qy by 2mp-grafting. (Remark Q, = Qy.)

Theorem (Goldman)
ho '(QF(S) = || Q.

MEMﬁz(S)

The component Qy is called standard, Q, (x # 0) exotic.
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Complex Earthquake

let H={r=t++/-1beC|b>0}.
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Complex Earthquake

let H={r=t++/—-1bcC|b>0}. Fix/>0.

Let tweq(Xr) = < O g ) e T(S).

Define Eq : H — P(S) by
Eq(t + vV —1b) = Grp.o(twr.o (X)) € P(S)
By Thurston coords, we can regard H C P(S).
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Complex Earthquake

let H={r=t++/—-1bcC|b>0}. Fix/>0.

Let tweq(Xr) = < O g ) e T(S).

Define Eq : H — P(S) by
Eq(t + vV —1b) = Grp.o(twr.o (X)) € P(S)
By Thurston coords, we can regard H C P(S).

Simply denote the image of H by Eq(¢).

24 /29



Complex Earthquake

By construction, hol is the natural projection:

P(S) hol, X(S)
U U
Eq(¢) — X(¢)
I I
{7 | Im(7) > 0} {r|—7m<Im(7) <7}
W

W
T — 7 mod 27/ —1



Complex Earthquake

By construction, hol is the natural projection:

hol

P(S) — X(S)
U U
Eq(¥) — X(0)
I I
{7 | Im(7) > 0} {r|—7m<Im(7) <7}
W W
T > 7 mod 27y/—1

We are interested in QF (¢) C X({), so consider
hol Y (QF (£)) = hol X (X(¢) N QF(S))
= Eq(¢) N hol }(QF(S)).



Com

plex Earthquake

By Goldman's Theorem, we have

16

14 |

12

Eq(¢) Nhol Y (QF(S)) =

MEMﬁz(S)

10 ]

Q2a
Eq(6.0)

| | Ea(0)n Q..
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Complex Earthquake

hol maps each component of
Eq(¢)NQ,, into a comp of QF(¢).

14 |
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Complex Earthquake
hol maps each component of
Eq(¢)NQ,, into a comp of QF(¢).
Thus if
Eq({) N Q. # 0
for some p ¢ {0,c,2a,---},

QF (¢) has a comp other than the
standard one BM.
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Complex Earthquake

hol maps each component of = — pr—
Eq(¢)NQ, into a comp of QF (¢). “W
Thus if S AN 2N
Eq() N Q, 0 INAAY

for some p ¢ {0,q,2a, -}, Ei EE E E

QF (¢) has a comp other than the
standard one BM.  Moreover,
Prop (K.)
Eq(¢) nhol *(BM) = | | Eq(¢) N Qi
k>0
for any ¢ > 0.
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Existence of exotic components in Eq(/)

We need to find 1 ¢ {0, ,2a,--- } s.t. Eq(¢) N Q, # 0
for sufficiently large ¢ > 0. Consider the case u = (.
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Existence of exotic components in Eq(/)

We need to find 1 ¢ {0, ,2a,--- } s.t. Eq(¢) N Q, # 0
for sufficiently large ¢ > 0. Consider the case u = (.

Let Dg be the Dehn twist along 3. Fix X € T(S).
Consider a sequence in P(S) = ML(S) x T(S)

2 7 D, (o)
Q0 n

p
which converges to (275, X) € Qs as n — .

Thus (%”Dg(oz), X) € Qg for large n.

Apply D;", then (Za, D;"(X)) € Qg for large n.

But if we let ¢ = {,(D;"(X)), (Za, D;"(X)) € Eq(¢)
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Final Remarks

@ For k € N, we can show Eq(¢) N Qk.5 # 0 similarly
for large ¢ by considering

<#D§(a), x) 7% (27kB, X) € Qup.
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@ For k € N, we can show Eq(¢) N Qk.5 # 0 similarly
for large ¢ by considering

<#D§(a), x) 7% (27kB, X) € Qup.
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@ Moreover we can use € ML(S)z instead of
provided (s, ) # 0.



