
Exotic components in linear slices of
quasi-Fuchsian groups

Yuichi Kabaya
(Kyoto University)

https://www.math.kyoto-u.ac.jp/~kabaya/
(These slides are available.)

Osaka, February 14 2015

1 / 29

https://www.math.kyoto-u.ac.jp/~kabaya/


Outline
S : once punctured torus
α ⊂ S : essential simple closed curve

S
α

QF (S) = {ρ : π1(S) → PSL2C |
injective, ρ(π1(S)) quasi-Fuchsian}/ ∼conj .

λα : QF (S) → C/2π
√
−1Z : the (complex) length of α

For ℓ > 0, consider a slice of QF (S)

QF (ℓ) = {ρ ∈ QF (S) | λα(ρ) = ℓ}.
This can be regarded as a subset of

{τ ∈ C | −π < Im(τ) ≤ π}.
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Outline
QF (ℓ) looks like this:

ℓ = 0.5

Interested in the shape of QF (ℓ) as ℓ getting longer.
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Interested in the shape of QF (ℓ) as ℓ getting longer.
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QF (ℓ) looks like this:

ℓ = 16.0
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QF (ℓ) looks like this:

ℓ = 18.0

Interested in the shape of QF (ℓ) as ℓ getting longer.

3 / 29



Outline
QF (ℓ) looks like this:

ℓ = 20.0

Interested in the shape of QF (ℓ) as ℓ getting longer.
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Outline

1. Basics on Kleinian (once punctured torus) groups

2. Linear slices & Main theorem

3. Complex projective structures and complex
earthquake

4. Proof of the main theorem

With many pictures ...
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Basics (Hyperbolic space)

H3 = {(z , t) | z ∈ C, t ∈ R>0} : 3-dim hyperbolic space

{t = 0} = C ∪ {∞} = CP1 : its boundary

PSL2C = SL2C/{±1} acts on CP1 by
(
a b
c d

)
· z =

az + b

cz + d
(z ∈ CP1 = C ∪ {∞})

This action extends to the interior H3 isometrically.

Γ < PSL2C : torsion free discrete subgroup

⇒ M = H3/Γ is a complete hyperbolic 3-manifold
s.t. π1(M) ∼= Γ
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Basics (Deformation space)

S = Sg ,n : genus g , n punctured surface (χ(S) < 0)

X (S) = {ρ : π1(S) → PSL2C |
irreducible, preserving parabolics}/ ∼conj.

: the character variety

AH(S) = {[ρ] ∈ X (S) | faithful, discrete image}

If ρ ∈ AH(S), then H3/ρ(π1(S)) is a complete
hyperbolic 3-manifold homotopy equivalent to S .

AH(S) is the deformation space of such structures.
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Basics (Limit sets)

Γ < PSL2C : discrete subgroup

Fix a point p ∈ H3. The limit set of Γ is defined by

Λ(Γ) = {accumulation points of Γ · p on CP1}.
(Λ(Γ) ⊂ CP1, not depend on the choice of p)

Example (Fuchsian groups)
If Γ < PSL2(R), Γ preserves
H2(⊂ H3), thus Λ(Γ) is a subset
of R ∪ {∞} (a ‘round circle’ in
CP1).
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Basics (Quasi-Fuchsian representations)
We can deform a Fuchsian rep a little in PSL2C. The
limit set is no longer a round circle, but may be ∼= S1.

Definition
Let ρ ∈ AH(S). If the limit set Λ(ρ(π1(S))) is
homeomorphic to S1, ρ is called quasi-Fuchsian.

QF (S) = {ρ ∈ AH(S) | ρ is quasi-Fuchsian.}
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Basics (Known properties)

Known facts
QF (S) ⊂ X (S) open subset

QF (S) ∼= T (S)× T (S), where T (S) is the
Teichmüller space of S . (T (Sg ,n) ∼= R6g−6+2n)

QF (S) = AH(S) : density theorem

AH(S) is parametrized by its end invariants (Ending
Lamination Theorem).

But the shape of QF (S) in X (S) is very complicated!
(e.g. self-bumping, AH(S) is not locally connected.)
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Basics (Complex length)

For γ ∈ π1(S), ρ ∈ X (S), ρ(γ) acts on H3.

Define the (complex) length by

λγ(ρ) = (translation length of ρ(γ))

+
√
−1 (rotation angle of ρ(γ))

mod 2π
√
−1Z. This is characterized by

tr(ρ(γ)) = 2 cosh(
λγ(ρ)

2
).
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Character variety
S = S1,1 : once punctured torus
Fix α, β ∈ π1(S) so that [α, β]
is peripheral.

β

S
α

The SL2C-character variety XSL(S) is defined similarly as
PSL2C case. As affine varieties, we have

XSL(S) ∼= {(x , y , z) ∈ C3 | x2 + y 2 + z2 = xyz}
via

[ρ] ,→ (tr(ρ(α)), tr(ρ(β)), tr(ρ(αβ))).

X (S) is obtained as a quotient of XSL(S) by the action
of Z/2Z generated by

(x , y , z) = (−x ,−y , z), (x , y , z) = (x ,−y ,−z).
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Linear slices
Any essential simple closed curve on
S = S1,1 is represented by a primi-
tive element p[α]+q[β] ∈ H1(S ;Z).
Regard it as p/q ∈ Q ∪ {∞}.

β

S
α

For p/q, take γp/q ∈ π1(S) freely homotopic to p/q.

Define the length function λp/q : X (S) → C/2π
√
−1Z

by λp/q(ρ) = λγp/q(ρ).

Definition
For ℓ > 0, let

X (ℓ) = {ρ ∈ X (S) | λ1/0(ρ) = ℓ}

X (ℓ) is a slice of X (S) on which (cpx length of α) ≡ ℓ.
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Complex Fenchel-Nielsen coordinates
For ℓ > 0, define a map

{τ ∈ C | −π < Im(τ) ≤ π}
∼=−→ X (ℓ)

by

τ ,→ (2 cosh(ℓ/2),
2 cosh(τ/2)

tanh(ℓ/2)
,
2 cosh((τ + ℓ)/2)

tanh(ℓ/2)
).

This gives a bijection. (Recall tr ρ(α) = 2 cosh(λ1/0/2).)

Note
If we let τ = t +

√
−1b,

t is the twisting distance
and b is the bending angle
along α.
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Linear slices of QF (S)
Definition
For ℓ > 0, define

QF (ℓ) = QF (S) ∩ X (ℓ)

QF (2.0) ⊂ X (2.0) (black region)
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Linear slices of QF (S)
Definition
For ℓ > 0, define

QF (ℓ) = QF (S) ∩ X (ℓ)

QF (5.0) ⊂ X (5.0) (black region)
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Linear slices of QF (S)

QF (2.0)

Facts
The Dehn twist along α acts on X (ℓ) as

τ ,→ τ + ℓ. (translation)

The real line {τ | Im(τ) = 0} corresponds to the
Fuchsian representations satisfying λα = ℓ.

By McMullen’s disk convexity of QF (S),
QF (ℓ) is a union of (open) disks.
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Linear slices of QF (S)

QF (6.0)

Facts
The Dehn twist along α acts on X (ℓ) as

τ ,→ τ + ℓ. (translation)

The real line {τ | Im(τ) = 0} corresponds to the
Fuchsian representations satisfying λα = ℓ.

By McMullen’s disk convexity of QF (S),
QF (ℓ) is a union of (open) disks.
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Linear slices of QF (S)
For any ℓ > 0, there exists a unique standard component
containing Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)
QF (ℓ) has only one component if ℓ is sufficiently small,
has more than one component if ℓ is sufficiently large.

QF (2.0) QF (5.0)

Today, we will give another proof for the latter part, and
give refined results.

16 / 29



Linear slices of QF (S)
For any ℓ > 0, there exists a unique standard component
containing Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)
QF (ℓ) has only one component if ℓ is sufficiently small,
has more than one component if ℓ is sufficiently large.

QF (2.0) QF (5.0)

Today, we will give another proof for the latter part, and
give refined results.

16 / 29



Linear slices of QF (S)
For any ℓ > 0, there exists a unique standard component
containing Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)
QF (ℓ) has only one component if ℓ is sufficiently small,
has more than one component if ℓ is sufficiently large.

QF (2.0) QF (5.0)

Today, we will give another proof for the latter part, and
give refined results.

16 / 29



More on QF (S)

The standard component was extensively studied by
Keen-Series, they called it the BM-slice (denote BM).

For ρ ∈ QF (S), let pl±(ρ) ∈ ML(S) be the bending
measures on the convex hull boundary.

Theorem (Keen-Series, 2004)
ρ ∈ BM iff one of [pl±] coincides with α in PML(S).

Roughly, a representation in BM is obtained from a
Fuchsian one by bending along α continuously.
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Complex projective structures
S : surface (χ(S) < 0)

Definition
A complex projective structure or
CP1-structure on S is a geometric
structure locally modelled on CP1

with transition functions in PSL2C.

in CP

PSL(2,C)

1

S

(If S has punctures, assume some boundary conditions.)

Example (Fuchsian uniformization)

A hyperbolic str on S gives an identification S̃ ∼= H2.
Since H2 ⊂ CP1, this gives a CP1-str.

19 / 29



Complex projective structures
S : surface (χ(S) < 0)

Definition
A complex projective structure or
CP1-structure on S is a geometric
structure locally modelled on CP1

with transition functions in PSL2C.

in CP

PSL(2,C)

1

S

(If S has punctures, assume some boundary conditions.)

Example (Fuchsian uniformization)

A hyperbolic str on S gives an identification S̃ ∼= H2.
Since H2 ⊂ CP1, this gives a CP1-str.

19 / 29



Complex projective structures
S : surface (χ(S) < 0)

Definition
A complex projective structure or
CP1-structure on S is a geometric
structure locally modelled on CP1

with transition functions in PSL2C.

in CP

PSL(2,C)

1

S

(If S has punctures, assume some boundary conditions.)

Example (Fuchsian uniformization)

A hyperbolic str on S gives an identification S̃ ∼= H2.
Since H2 ⊂ CP1, this gives a CP1-str.

19 / 29



Complex projective structures

Similarly as Teichmüller space, we can define P(S) the
set of marked CP1-structures on S .

By analytic continuation, we have a holonomy map

hol : P(S) → X (S).

This is known to be a local homeomorphism.
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Grafting
We can construct another CP1-str from a Fuchsian
uniformization.

X : a hyp str on S , α ⊂ X : a simple closed geodesic.

Let Grb·α(X ) be the CP1-str obtained
from X by inserting a height b annulus
along α.

In the universal cover X̃ , the local picture looks like:

But there are infinitely many lifts of α · · ·
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Grafting

The grafting operation Grb·α : T (S) → P(S) can be
generalized for measured laminations.

Theorem (Thurston, Kamishima-Tan)

Gr : ML(S)× T (S) → P(S)

(µ,X ) ,→ Grµ(X )

is a homeomorphism (Thurston coordinates).
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CP1-structures with q-F holonomy

Q0 = { marked CP1-strs with q-F holonomy and
injective developing maps } ⊂ P(S)

MLZ(S) : the set of multicurves with integral weights.

For µ ∈ MLZ(S), let Qµ be the set of CP1-strs
obtained from Q0 by 2πµ-grafting. (Remark Qµ

∼= Q0.)

Theorem (Goldman)

hol−1(QF (S)) =
⊔

µ∈MLZ(S)

Qµ

The component Q0 is called standard, Qµ (µ ̸= 0) exotic.
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Complex Earthquake

Let H = {τ = t +
√
−1b ∈ C | b ≥ 0}.

Fix ℓ > 0.

Let twt·α(Xℓ) =

( )
∈ T (S).

Define Eq : H → P(S) by

Eq(t +
√
−1b) = Grb·α(twt·α(Xℓ)) ∈ P(S)

By Thurston coords, we can regard H ⊂ P(S).

Simply denote the image of H by Eq(ℓ).
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Complex Earthquake
By construction, hol is the natural projection:

P(S)
hol−→ X (S)

⊂ ⊂

Eq(ℓ) → X (ℓ)
= =

{τ | Im(τ) ≥ 0} {τ | −π < Im(τ) ≤ π}

∈ ∈

τ ,→ τ mod 2π
√
−1

We are interested in QF (ℓ) ⊂ X (ℓ), so consider

hol−1(QF (ℓ)) = hol−1(X (ℓ) ∩ QF (S))

= Eq(ℓ) ∩ hol−1(QF (S)).
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Complex Earthquake
By Goldman’s Theorem, we have

Eq(ℓ) ∩ hol−1(QF (S)) =
⊔

µ∈MLZ(S)

Eq(ℓ) ∩ Qµ.

Q2α

Qα

Q0

Eq(6.0)
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Complex Earthquake
hol maps each component of
Eq(ℓ)∩Qµ into a comp of QF (ℓ).

Thus if

Eq(ℓ) ∩ Qµ ̸= ∅
for some µ /∈ {0,α, 2α, · · · },
QF (ℓ) has a comp other than the
standard one BM . Moreover,

Prop (K.)

Eq(ℓ) ∩ hol−1(BM) =
⊔

k≥0

Eq(ℓ) ∩ Qk ·α

for any ℓ > 0.
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Existence of exotic components in Eq(ℓ)
We need to find µ /∈ {0,α, 2α, · · · } s.t. Eq(ℓ) ∩ Qµ ̸= ∅
for sufficiently large ℓ > 0. Consider the case µ = β.

Let Dβ be the Dehn twist along β. Fix X ∈ T (S).

Consider a sequence in P(S) ∼= ML(S)× T (S)
(
2π

n
Dn

β(α), X

)

which converges to (2πβ, X ) ∈ Qβ as n → ∞.

Thus (2πn D
n
β(α), X ) ∈ Qβ for large n.

Apply D−n
β , then (2πn α, D

−n
β (X )) ∈ Qβ for large n.

But if we let ℓ = ℓα(D
−n
β (X )), (2πn α, D

−n
β (X )) ∈ Eq(ℓ).
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Final Remarks
For k ∈ N, we can show Eq(ℓ) ∩ Qk ·β ̸= ∅ similarly
for large ℓ by considering(

2πk

n
Dn

β(α), X

)
n→∞−−−→ (2πkβ, X ) ∈ Qk ·β.

ℓ = 10.0

Moreover we can use µ ∈ ML(S)Z instead of β
provided i(µ,α) ̸= 0.
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