Exotic components in linear slices of quasi-Fuchsian groups

Yuichi Kabaya (Kyoto University) https://www.math.kyoto-u.ac.jp/~kabaya/ (These slides are available.)

Osaka, February 14 2015

- S : once punctured torus
- $\alpha \subset {\it S}$: essential simple closed curve

S : once punctured torus $\alpha \subset S$: essential simple closed curve

$$\begin{aligned} \mathsf{QF}(S) &= \{\rho: \pi_1(S) \to \mathsf{PSL}_2\mathbb{C} \mid \\ & \text{injective}, \ \rho(\pi_1(S)) \text{ quasi-Fuchsian} \} / \sim_{\mathit{conj.}} \end{aligned}$$

S : once punctured torus $\alpha \subset S$: essential simple closed curve

$$QF(S) = \{\rho : \pi_1(S) \to \mathsf{PSL}_2\mathbb{C} \mid \\ \mathsf{injective}, \ \rho(\pi_1(S)) \ \mathsf{quasi-Fuchsian}\} / \sim_{\mathit{conj.}} \end{bmatrix}$$

 $\lambda_{lpha}: QF(S)
ightarrow \mathbb{C}/2\pi \sqrt{-1}\mathbb{Z}$: the (complex) length of lpha

S : once punctured torus $\alpha \subset S$: essential simple closed curve

$$QF(S) = \{ \rho : \pi_1(S) \to \mathsf{PSL}_2\mathbb{C} \mid \\ \mathsf{injective}, \ \rho(\pi_1(S)) \ \mathsf{quasi-Fuchsian} \} / \sim_{\mathit{conj.}} \end{bmatrix}$$

 $\lambda_{\alpha} : QF(S) \to \mathbb{C}/2\pi\sqrt{-1}\mathbb{Z}$: the (complex) length of α For $\ell > 0$, consider a slice of QF(S) $QF(\ell) = \{\rho \in QF(S) \mid \lambda_{\alpha}(\rho) = \ell\}.$

S : once punctured torus $\alpha \subset S$: essential simple closed curve

$$QF(S) = \{ \rho : \pi_1(S) \to \mathsf{PSL}_2\mathbb{C} \mid \\ \mathsf{injective}, \ \rho(\pi_1(S)) \ \mathsf{quasi-Fuchsian} \} / \sim_{\mathit{conj.}} \end{bmatrix}$$

$$\begin{split} \lambda_{\alpha} &: QF(S) \to \mathbb{C}/2\pi\sqrt{-1}\mathbb{Z} : \text{ the (complex) length of } \alpha \\ \text{For } \ell > 0, \text{ consider a slice of } QF(S) \\ QF(\ell) &= \{\rho \in QF(S) \mid \lambda_{\alpha}(\rho) = \ell\}. \end{split}$$
This can be regarded as a subset of

$$\{\tau \in \mathbb{C} \mid -\pi < \operatorname{Im}(\tau) \leq \pi\}.$$

Interested in the shape of $QF(\ell)$ as ℓ getting longer.

- 1. Basics on Kleinian (once punctured torus) groups
- 2. Linear slices & Main theorem
- 3. Complex projective structures and complex earthquake
- 4. Proof of the main theorem

With many pictures ...

Basics (Hyperbolic space) $\mathbb{H}^{3} = \{(z, t) \mid z \in \mathbb{C}, t \in \mathbb{R}_{>0}\}$: 3-dim hyperbolic space

Basics (Hyperbolic space)

- $\mathbb{H}^3 = \{(z, t) \mid z \in \mathbb{C}, \ t \in \mathbb{R}_{>0}\}$: 3-dim hyperbolic space
- $\{t = 0\} = \mathbb{C} \cup \{\infty\} = \mathbb{C}P^1$: its boundary

Basics (Hyperbolic space)

$$\mathbb{H}^{3} = \{(z, t) \mid z \in \mathbb{C}, t \in \mathbb{R}_{>0}\} : 3\text{-dim hyperbolic space}$$
$$\{t = 0\} = \mathbb{C} \cup \{\infty\} = \mathbb{C}P^{1} : \text{its boundary}$$
$$\mathsf{PSL}_{2}\mathbb{C} = \mathsf{SL}_{2}\mathbb{C}/\{\pm 1\} \text{ acts on } \mathbb{C}P^{1} \text{ by}$$
$$\binom{a \quad b}{c \quad d} \cdot z = \frac{az + b}{cz + d} \quad (z \in \mathbb{C}P^{1} = \mathbb{C} \cup \{\infty\})$$

Basics (Hyperbolic space) $\mathbb{H}^{3} = \{(z, t) \mid z \in \mathbb{C}, t \in \mathbb{R}_{>0}\} : 3\text{-dim hyperbolic space}$ $\{t = 0\} = \mathbb{C} \cup \{\infty\} = \mathbb{C}P^{1} : \text{its boundary}$ $PSL_{2}\mathbb{C} = SL_{2}\mathbb{C}/\{\pm 1\} \text{ acts on } \mathbb{C}P^{1} \text{ by}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az + b}{cz + d} \quad (z \in \mathbb{C}P^{1} = \mathbb{C} \cup \{\infty\})$

This action extends to the interior \mathbb{H}^3 isometrically.

Basics (Hyperbolic space) $\mathbb{H}^{3} = \{(z, t) \mid z \in \mathbb{C}, t \in \mathbb{R}_{>0}\} : 3\text{-dim hyperbolic space}$ $\{t = 0\} = \mathbb{C} \cup \{\infty\} = \mathbb{C}P^{1} : \text{its boundary}$ $PSL_{2}\mathbb{C} = SL_{2}\mathbb{C}/\{\pm 1\} \text{ acts on } \mathbb{C}P^{1} \text{ by}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az + b}{cz + d} \quad (z \in \mathbb{C}P^{1} = \mathbb{C} \cup \{\infty\})$

This action extends to the interior \mathbb{H}^3 isometrically.

 $\Gamma < \mathsf{PSL}_2\mathbb{C}$: torsion free discrete subgroup

 $\Rightarrow M = \mathbb{H}^3/\Gamma$ is a complete hyperbolic 3-manifold s.t. $\pi_1(M) \cong \Gamma$

 $S = S_{g,n}$: genus g, n punctured surface ($\chi(S) < 0$)

$$\begin{split} S &= S_{g,n} : \text{ genus } g, \ n \text{ punctured surface } (\chi(S) < 0) \\ X(S) &= \{ \rho : \pi_1(S) \to \mathsf{PSL}_2\mathbb{C} \mid \\ & \text{ irreducible, preserving parabolics} \} / \sim_{\mathsf{conj.}} \\ &: \text{ the character variety} \end{split}$$

 $S = S_{g,n} : \text{ genus } g, n \text{ punctured surface } (\chi(S) < 0)$ $X(S) = \{\rho : \pi_1(S) \to \mathsf{PSL}_2\mathbb{C} \mid \\ \text{ irreducible, preserving parabolics} \} / \sim_{\mathsf{conj.}} \\ : \text{ the character variety}$ $AH(S) = \{[\rho] \in X(S) \mid \text{faithful, discrete image} \}$

$$S = S_{g,n} : \text{ genus } g, n \text{ punctured surface } (\chi(S) < 0)$$
$$X(S) = \{\rho : \pi_1(S) \to \mathsf{PSL}_2\mathbb{C} \mid \\ \text{ irreducible, preserving parabolics} \} / \sim_{\mathsf{conj.}} \\ : \text{ the character variety}$$

 $AH(S) = \{ [\rho] \in X(S) \mid \text{faithful, discrete image} \}$

If $\rho \in AH(S)$, then $\mathbb{H}^3/\rho(\pi_1(S))$ is a complete hyperbolic 3-manifold homotopy equivalent to S.

AH(S) is the deformation space of such structures.

Basics (Limit sets)

 $\Gamma < \mathsf{PSL}_2\mathbb{C}$: discrete subgroup Fix a point $p \in \mathbb{H}^3$. The limit set of Γ is defined by $\Lambda(\Gamma) = \{ \text{accumulation points of } \Gamma \cdot p \text{ on } \mathbb{C}P^1 \}.$ $(\Lambda(\Gamma) \subset \mathbb{C}P^1, \text{ not depend on the choice of } p)$

Basics (Limit sets)

 $\Gamma < PSL_2\mathbb{C}$: discrete subgroup Fix a point $p \in \mathbb{H}^3$. The limit set of Γ is defined by $\Lambda(\Gamma) = \{ \text{accumulation points of } \Gamma \cdot p \text{ on } \mathbb{C}P^1 \}.$ $(\Lambda(\Gamma) \subset \mathbb{C}P^1, \text{ not depend on the choice of } p)$

Example (Fuchsian groups) If $\Gamma < PSL_2(\mathbb{R})$, Γ preserves $\mathbb{H}^2(\subset \mathbb{H}^3)$, thus $\Lambda(\Gamma)$ is a subset of $\mathbb{R} \cup \{\infty\}$ (a 'round circle' in $\mathbb{C}P^1$).

Basics (Quasi-Fuchsian representations)

We can deform a Fuchsian rep a little in $PSL_2\mathbb{C}$. The limit set is no longer a round circle, but may be $\cong S^1$.

Basics (Quasi-Fuchsian representations)

We can deform a Fuchsian rep a little in $PSL_2\mathbb{C}$. The limit set is no longer a round circle, but may be $\cong S^1$.

Definition

Let $\rho \in AH(S)$. If the limit set $\Lambda(\rho(\pi_1(S)))$ is homeomorphic to S^1 , ρ is called quasi-Fuchsian. $QF(S) = \{\rho \in AH(S) \mid \rho \text{ is quasi-Fuchsian.}\}$

Known facts QF(S) ⊂ X(S) open subset

Known facts

- $QF(S) \subset X(S)$ open subset
- $QF(S) \cong \mathcal{T}(S) \times \mathcal{T}(\overline{S})$, where $\mathcal{T}(S)$ is the Teichmüller space of S. $(\mathcal{T}(S_{g,n}) \cong \mathbb{R}^{6g-6+2n})$

Known facts

- $QF(S) \subset X(S)$ open subset
- $QF(S) \cong \mathcal{T}(S) \times \mathcal{T}(\overline{S})$, where $\mathcal{T}(S)$ is the Teichmüller space of S. $(\mathcal{T}(S_{g,n}) \cong \mathbb{R}^{6g-6+2n})$

•
$$\overline{QF(S)} = AH(S)$$
 : density theorem

Known facts

- $QF(S) \subset X(S)$ open subset
- $QF(S) \cong \mathcal{T}(S) \times \mathcal{T}(\overline{S})$, where $\mathcal{T}(S)$ is the Teichmüller space of S. $(\mathcal{T}(S_{g,n}) \cong \mathbb{R}^{6g-6+2n})$
- $\overline{QF(S)} = AH(S)$: density theorem
- *AH*(*S*) is parametrized by its end invariants (Ending Lamination Theorem).

Known facts

- $QF(S) \subset X(S)$ open subset
- $QF(S) \cong \mathcal{T}(S) \times \mathcal{T}(\overline{S})$, where $\mathcal{T}(S)$ is the Teichmüller space of S. $(\mathcal{T}(S_{g,n}) \cong \mathbb{R}^{6g-6+2n})$
- $\overline{QF(S)} = AH(S)$: density theorem
- *AH*(*S*) is parametrized by its end invariants (Ending Lamination Theorem).

But the shape of QF(S) in X(S) is very complicated! (e.g. self-bumping, AH(S) is not locally connected.)

Basics (Complex length)

For
$$\gamma \in \pi_1(S)$$
, $ho \in X(S)$, $ho(\gamma)$ acts on $\mathbb{H}^3.$

Define the (complex) length by

$$egin{aligned} \lambda_\gamma(
ho) &= (ext{translation length of }
ho(\gamma)) \ &+ \sqrt{-1} \, (ext{rotation angle of }
ho(\gamma)) \end{aligned}$$

mod $2\pi\sqrt{-1}\mathbb{Z}$. This is characterized by $\operatorname{tr}(
ho(\gamma))=2\cosh(rac{\lambda_\gamma(
ho)}{2}).$

 $S = S_{1,1}$: once punctured torus Fix $\alpha, \beta \in \pi_1(S)$ so that $[\alpha, \beta]$ is peripheral.

 $S = S_{1,1}$: once punctured torus Fix $\alpha, \beta \in \pi_1(S)$ so that $[\alpha, \beta]$ is peripheral.

The SL₂ \mathbb{C} -character variety $X_{SL}(S)$ is defined similarly as PSL₂ \mathbb{C} case.

 $S = S_{1,1}$: once punctured torus Fix $\alpha, \beta \in \pi_1(S)$ so that $[\alpha, \beta]$ is peripheral.

The SL₂ \mathbb{C} -character variety $X_{SL}(S)$ is defined similarly as PSL₂ \mathbb{C} case. As affine varieties, we have

$$X_{SL}(S) \cong \{(x, y, z) \in \mathbb{C}^3 \mid x^2 + y^2 + z^2 = xyz\}$$

via

 $[\rho] \mapsto (\mathsf{tr}(\rho(\alpha)), \, \mathsf{tr}(\rho(\beta)), \, \mathsf{tr}(\rho(\alpha\beta))).$

 $S = S_{1,1}$: once punctured torus Fix $\alpha, \beta \in \pi_1(S)$ so that $[\alpha, \beta]$ is peripheral.

The SL₂ \mathbb{C} -character variety $X_{SL}(S)$ is defined similarly as PSL₂ \mathbb{C} case. As affine varieties, we have

$$X_{SL}(S) \cong \{(x, y, z) \in \mathbb{C}^3 \mid x^2 + y^2 + z^2 = xyz\}$$

via

$$[\rho] \mapsto (\mathsf{tr}(\rho(\alpha)), \, \mathsf{tr}(\rho(\beta)), \, \mathsf{tr}(\rho(\alpha\beta))).$$

X(S) is obtained as a quotient of $X_{SL}(S)$ by the action of $\mathbb{Z}/2\mathbb{Z}$ generated by

$$(x, y, z) = (-x, -y, z), \quad (x, y, z) = (x, -y, -z).$$

Linear slices Any essential simple closed curve on $S = S_{1,1}$ is represented by a primitive element $p[\alpha] + q[\beta] \in H_1(S; \mathbb{Z})$. Regard it as $p/q \in \mathbb{Q} \cup \{\infty\}$.

Linear slices

Any essential simple closed curve on

 $S = S_{1,1}$ is represented by a primitive element $p[\alpha] + q[\beta] \in H_1(S; \mathbb{Z})$. Regard it as $p/q \in \mathbb{Q} \cup \{\infty\}$.

For p/q, take $\gamma_{p/q} \in \pi_1(S)$ freely homotopic to p/q.

Define the length function $\lambda_{p/q} : X(S) \to \mathbb{C}/2\pi\sqrt{-1}\mathbb{Z}$ by $\lambda_{p/q}(\rho) = \lambda_{\gamma_{p/q}}(\rho)$.

Linear slices

Any essential simple closed curve on

 $S = S_{1,1}$ is represented by a primitive element $p[\alpha] + q[\beta] \in H_1(S; \mathbb{Z})$. Regard it as $p/q \in \mathbb{Q} \cup \{\infty\}$.

For p/q, take $\gamma_{p/q} \in \pi_1(S)$ freely homotopic to p/q.

Define the length function $\lambda_{p/q} : X(S) \to \mathbb{C}/2\pi\sqrt{-1}\mathbb{Z}$ by $\lambda_{p/q}(\rho) = \lambda_{\gamma_{p/q}}(\rho)$.

Definition

For $\ell > 0$, let

$$X(\ell) = \{
ho \in X(\mathcal{S}) \mid \lambda_{1/0}(
ho) = \ell\}$$

 $X(\ell)$ is a slice of X(S) on which (cpx length of $\alpha) \equiv \ell$.

Complex Fenchel-Nielsen coordinates For $\ell > 0$, define a map

$$\{ au \in \mathbb{C} \mid -\pi < \mathsf{Im}(au) \leq \pi\} \stackrel{\cong}{\longrightarrow} X(\ell)$$

~ /

by

$$\tau \mapsto (2\cosh(\ell/2), \frac{2\cosh(\tau/2)}{\tanh(\ell/2)}, \frac{2\cosh((\tau+\ell)/2)}{\tanh(\ell/2)}).$$

This gives a bijection. (Recall tr $\rho(\alpha) = 2\cosh(\lambda_{1/0}/2).$)

Complex Fenchel-Nielsen coordinates For $\ell > 0$, define a map

$$\{ au \in \mathbb{C} \mid -\pi < \mathsf{Im}(au) \leq \pi\} \overset{\cong}{\longrightarrow} X(\ell)$$

by

$$au\mapsto (2\cosh(\ell/2),\,rac{2\cosh(\tau/2)}{\tanh(\ell/2)},\,rac{2\cosh((\tau+\ell)/2)}{\tanh(\ell/2)}).$$

This gives a bijection. (Recall tr $\rho(\alpha) = 2 \cosh(\lambda_{1/0}/2)$.)

Note

If we let $\tau = t + \sqrt{-1}b$, t is the twisting distance and b is the bending angle along α .

 $QF(\ell) = QF(S) \cap X(\ell)$

 $QF(\ell) = QF(S) \cap X(\ell)$

 $QF(\ell) = QF(S) \cap X(\ell)$


```
QF(\ell) = QF(S) \cap X(\ell)
```


• The Dehn twist along α acts on $X(\ell)$ as $\tau \mapsto \tau + \ell$. (translation)

• The Dehn twist along lpha acts on $X(\ell)$ as

 $\tau \mapsto \tau + \ell$. (translation)

• The real line $\{\tau \mid Im(\tau) = 0\}$ corresponds to the Fuchsian representations satisfying $\lambda_{\alpha} = \ell$.

• The Dehn twist along lpha acts on $X(\ell)$ as

 $\tau \mapsto \tau + \ell$. (translation)

- The real line $\{\tau \mid Im(\tau) = 0\}$ corresponds to the Fuchsian representations satisfying $\lambda_{\alpha} = \ell$.
- By McMullen's disk convexity of QF(S), QF(ℓ) is a union of (open) disks.

• The Dehn twist along lpha acts on $X(\ell)$ as

 $\tau \mapsto \tau + \ell$. (translation)

- The real line $\{\tau \mid Im(\tau) = 0\}$ corresponds to the Fuchsian representations satisfying $\lambda_{\alpha} = \ell$.
- By McMullen's disk convexity of QF(S), QF(ℓ) is a union of (open) disks.

For any $\ell > 0$, there exists a unique standard component containing Fuchsian representations. As pictures suggest;

For any $\ell > 0$, there exists a unique standard component containing Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)

 $QF(\ell)$ has only one component if ℓ is sufficiently small, has more than one component if ℓ is sufficiently large.

For any $\ell > 0$, there exists a unique standard component containing Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)

 $QF(\ell)$ has only one component if ℓ is sufficiently small, has more than one component if ℓ is sufficiently large.

Today, we will give another proof for the latter part, and give refined results.

More on QF(S)

The standard component was extensively studied by Keen-Series, they called it the BM-slice (denote *BM*).

More on QF(S)

The standard component was extensively studied by Keen-Series, they called it the BM-slice (denote *BM*).

For $\rho \in QF(S)$, let $pl^{\pm}(\rho) \in \mathcal{ML}(S)$ be the bending measures on the convex hull boundary.

More on QF(S)

The standard component was extensively studied by Keen-Series, they called it the BM-slice (denote *BM*).

For $\rho \in QF(S)$, let $pl^{\pm}(\rho) \in \mathcal{ML}(S)$ be the bending measures on the convex hull boundary.

Theorem (Keen-Series, 2004) $\rho \in BM$ iff one of $[pl^{\pm}]$ coincides with α in $\mathcal{PML}(S)$.

More on QF(S)

The standard component was extensively studied by Keen-Series, they called it the BM-slice (denote *BM*).

For $\rho \in QF(S)$, let $pl^{\pm}(\rho) \in \mathcal{ML}(S)$ be the bending measures on the convex hull boundary.

Theorem (Keen-Series, 2004) $\rho \in BM$ iff one of $[pl^{\pm}]$ coincides with α in $\mathcal{PML}(S)$.

Roughly, a representation in BM is obtained from a Fuchsian one by bending along α continuously.

S : surface $(\chi(S) < 0)$

Definition

A complex projective structure or $\mathbb{C}P^1$ -structure on S is a geometric structure locally modelled on $\mathbb{C}P^1$ with transition functions in $PSL_2\mathbb{C}$.

S : surface $(\chi(S) < 0)$

Definition

A complex projective structure or $\mathbb{C}P^1$ -structure on S is a geometric structure locally modelled on $\mathbb{C}P^1$ with transition functions in $PSL_2\mathbb{C}$.

(If S has punctures, assume some boundary conditions.)

S : surface $(\chi(S) < 0)$

Definition

A complex projective structure or $\mathbb{C}P^1$ -structure on S is a geometric structure locally modelled on $\mathbb{C}P^1$ with transition functions in $PSL_2\mathbb{C}$.

(If S has punctures, assume some boundary conditions.)

Example (Fuchsian uniformization)

A hyperbolic str on S gives an identification $\widetilde{S} \cong \mathbb{H}^2$. Since $\mathbb{H}^2 \subset \mathbb{C}P^1$, this gives a $\mathbb{C}P^1$ -str.

Similarly as Teichmüller space, we can define P(S) the set of marked $\mathbb{C}P^1$ -structures on S.

Similarly as Teichmüller space, we can define P(S) the set of marked $\mathbb{C}P^1$ -structures on S.

By analytic continuation, we have a holonomy map $\operatorname{hol}: P(S) \to X(S).$

This is known to be a local homeomorphism.

We can construct another $\mathbb{C}P^1$ -str from a Fuchsian uniformization.

X: a hyp str on S, $\alpha \subset X$: a simple closed geodesic.

We can construct another $\mathbb{C}P^1$ -str from a Fuchsian uniformization.

X : a hyp str on S, $\alpha \subset X$: a simple closed geodesic. Let $\operatorname{Gr}_{b \cdot \alpha}(X)$ be the $\mathbb{C}P^1$ -str obtained from X by inserting a height b annulus along α .

We can construct another $\mathbb{C}P^1$ -str from a Fuchsian uniformization.

X : a hyp str on S, $\alpha \subset X$: a simple closed geodesic. Let $\operatorname{Gr}_{b \cdot \alpha}(X)$ be the $\mathbb{C}P^1$ -str obtained from X by inserting a height b annulus along α .

In the universal cover \widetilde{X} , the local picture looks like:

We can construct another $\mathbb{C}P^1$ -str from a Fuchsian uniformization.

X : a hyp str on S, $\alpha \subset X$: a simple closed geodesic. Let $\operatorname{Gr}_{b \cdot \alpha}(X)$ be the $\mathbb{C}P^1$ -str obtained from X by inserting a height b annulus along α .

In the universal cover \widetilde{X} , the local picture looks like:

But there are infinitely many lifts of α \cdots

The grafting operation $\operatorname{Gr}_{b \cdot \alpha} : \mathcal{T}(S) \to P(S)$ can be generalized for measured laminations.

Theorem (Thurston, Kamishima-Tan)

$$\mathsf{Gr}:\mathcal{ML}(S) imes\mathcal{T}(S) o P(S)\ (\mu,X) \mapsto \mathsf{Gr}_\mu(X)$$

is a homeomorphism (Thurston coordinates).

 $Q_0 = \{ \text{ marked } \mathbb{C}P^1 \text{-strs with } q\text{-}F \text{ holonomy and} \ \text{ injective developing maps } \} \subset P(S)$

$Q_0 = \{ \text{ marked } \mathbb{C}P^1 \text{-strs with } q\text{-}F \text{ holonomy and} \ \text{ injective developing maps } \} \subset P(S)$

 $\mathcal{ML}_{\mathbb{Z}}(S)$: the set of multicurves with integral weights.

 $Q_0 = \{ \text{ marked } \mathbb{C}P^1 \text{-strs with } q\text{-}F \text{ holonomy and} \ \text{ injective developing maps } \} \subset P(S)$

 $\mathcal{ML}_{\mathbb{Z}}(S)$: the set of multicurves with integral weights. For $\mu \in \mathcal{ML}_{\mathbb{Z}}(S)$, let Q_{μ} be the set of $\mathbb{C}P^1$ -strs obtained from Q_0 by $2\pi\mu$ -grafting. (Remark $Q_{\mu} \cong Q_0$.)

 $Q_0 = \{ \text{ marked } \mathbb{C}P^1 \text{-strs with } q\text{-}F \text{ holonomy and} \ \text{ injective developing maps } \} \subset P(S)$

 $\mathcal{ML}_{\mathbb{Z}}(S)$: the set of multicurves with integral weights. For $\mu \in \mathcal{ML}_{\mathbb{Z}}(S)$, let Q_{μ} be the set of $\mathbb{C}P^1$ -strs obtained from Q_0 by $2\pi\mu$ -grafting. (Remark $Q_{\mu} \cong Q_0$.)

Theorem (Goldman)

$$\mathsf{hol}^{-1}(QF(S)) = igsqcup_{\mu \in \mathcal{ML}_{\mathbb{Z}}(S)} Q_{\mu}$$

The component Q_0 is called standard, $Q_{\mu} (\mu \neq 0)$ exotic.

Let
$$\overline{\mathbb{H}} = \{ \tau = t + \sqrt{-1}b \in \mathbb{C} \mid b \ge 0 \}.$$

Let $\overline{\mathbb{H}} = \{ \tau = t + \sqrt{-1}b \in \mathbb{C} \mid b \ge 0 \}.$ Fix $\ell > 0$.

ĺ

Let
$$\overline{\mathbb{H}} = \{\tau = t + \sqrt{-1}b \in \mathbb{C} \mid b \ge 0\}.$$
 Fix $\ell > 0$.
Let $\operatorname{tw}_{t \cdot \alpha}(X_{\ell}) = \left(\begin{array}{c} \alpha \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ &$

Let $\overline{\mathbb{H}} = \{ \tau = t + \sqrt{-1}b \in \mathbb{C} \mid b \ge 0 \}.$ Fix $\ell > 0$.

Let
$$\mathsf{tw}_{t \cdot \alpha}(X_{\ell}) = \left(\begin{array}{c} \alpha \\ & & \\ &$$

Define Eq : $\overline{\mathbb{H}} \to P(S)$ by Eq $(t + \sqrt{-1}b) = \operatorname{Gr}_{b \cdot \alpha}(\operatorname{tw}_{t \cdot \alpha}(X_{\ell})) \in P(S)$ By Thurston coords, we can regard $\overline{\mathbb{H}} \subset P(S)$.

Let $\overline{\mathbb{H}} = \{ \tau = t + \sqrt{-1}b \in \mathbb{C} \mid b \ge 0 \}.$ Fix $\ell > 0$.

Define Eq : $\overline{\mathbb{H}} \to P(S)$ by Eq $(t + \sqrt{-1}b) = \operatorname{Gr}_{b \cdot \alpha}(\operatorname{tw}_{t \cdot \alpha}(X_{\ell})) \in P(S)$ By Thurston coords, we can regard $\overline{\mathbb{H}} \subset P(S)$. Simply denote the image of $\overline{\mathbb{H}}$ by Eq (ℓ) .

By construction, hol is the natural projection:

By construction, hol is the natural projection:

We are interested in $QF(\ell) \subset X(\ell)$, so consider hol⁻¹($QF(\ell)$) = hol⁻¹($X(\ell) \cap QF(S)$) = Eq(ℓ) \cap hol⁻¹(QF(S)).

hol maps each component of $Eq(\ell) \cap Q_{\mu}$ into a comp of $QF(\ell)$.

hol maps each component of $Eq(\ell) \cap Q_{\mu}$ into a comp of $QF(\ell)$. Thus if

 $\mathsf{Eq}(\ell) \cap Q_{\mu} \neq \emptyset$ for some $\mu \notin \{0, \alpha, 2\alpha, \cdots\}, QF(\ell)$ has a comp other than the standard one *BM*.

hol maps each component of $Eq(\ell) \cap Q_{\mu}$ into a comp of $QF(\ell)$. Thus if

 $\mathsf{Eq}(\ell) \cap Q_{\mu} \neq \emptyset$ for some $\mu \notin \{0, \alpha, 2\alpha, \cdots\}$, $QF(\ell)$ has a comp other than the standard one BM. Moreover,

Prop (K.)

$$\mathit{Eq}(\ell)\cap \mathsf{hol}^{-1}(\mathit{BM}) = \bigsqcup_{k\geq 0} \mathit{Eq}(\ell)\cap \mathit{Q}_{k\cdot lpha}$$

for any $\ell > 0$.
Existence of exotic components in Eq(ℓ) We need to find $\mu \notin \{0, \alpha, 2\alpha, \cdots\}$ s.t. Eq(ℓ) $\cap Q_{\mu} \neq \emptyset$ for sufficiently large $\ell > 0$. Consider the case $\mu = \beta$.

Existence of exotic components in Eq(ℓ) We need to find $\mu \notin \{0, \alpha, 2\alpha, \cdots\}$ s.t. Eq(ℓ) $\cap Q_{\mu} \neq \emptyset$ for sufficiently large $\ell > 0$. Consider the case $\mu = \beta$.

Let D_{β} be the Dehn twist along β . Fix $X \in \mathcal{T}(S)$.

Consider a sequence in $P(S) \cong \mathcal{ML}(S) \times \mathcal{T}(S)$

which converges to $(2\pi\beta, X) \in Q_{\beta}$ as $n \to \infty$.

Consider a sequence in $P(S) \cong \mathcal{ML}(S) \times \mathcal{T}(S)$

$$\left(\frac{2\pi}{n}D_{\beta}^{n}(\alpha), X\right)$$

which converges to $(2\pi\beta, X) \in Q_{\beta}$ as $n \to \infty$. Thus $(\frac{2\pi}{n}D_{\beta}^{n}(\alpha), X) \in Q_{\beta}$ for large n.

Consider a sequence in $P(S) \cong \mathcal{ML}(S) \times \mathcal{T}(S)$

$$\left(\frac{2\pi}{n}D^n_{\beta}(\alpha), X\right)$$

which converges to $(2\pi\beta, X) \in Q_{\beta}$ as $n \to \infty$.

Thus $\left(\frac{2\pi}{n}D_{\beta}^{n}(\alpha), X\right) \in Q_{\beta}$ for large *n*.

Apply D_{β}^{-n} , then $(\frac{2\pi}{n}\alpha, D_{\beta}^{-n}(X)) \in Q_{\beta}$ for large n.

Consider a sequence in $P(S) \cong \mathcal{ML}(S) imes \mathcal{T}(S)$

$$\left(\frac{2\pi}{n}D^n_{\beta}(\alpha), X\right)$$

which converges to $(2\pi\beta, X) \in Q_{\beta}$ as $n \to \infty$.

Thus $(rac{2\pi}{n}D^n_eta(lpha),\,X)\in Q_eta$ for large *n*.

Apply D_{β}^{-n} , then $(\frac{2\pi}{n}\alpha, D_{\beta}^{-n}(X)) \in Q_{\beta}$ for large n. But if we let $\ell = \ell_{\alpha}(D_{\beta}^{-n}(X)), (\frac{2\pi}{n}\alpha, D_{\beta}^{-n}(X)) \in Eq(\ell)._{28/2}$

Final Remarks

For k ∈ N, we can show Eq(ℓ) ∩ Q_{k⋅β} ≠ Ø similarly for large ℓ by considering

Final Remarks

For k ∈ N, we can show Eq(ℓ) ∩ Q_{k⋅β} ≠ Ø similarly for large ℓ by considering

