Exotic components in linear slices of quasi-Fuchsian groups

Yuichi Kabaya

 (Kyoto University)https://www.math.kyoto-u.ac.jp/~kabaya/

(These slides are available.)

Osaka, February 142015

Outline

S : once punctured torus
$\alpha \subset S$: essential simple closed curve

Outline

S : once punctured torus
$\alpha \subset S$: essential simple closed curve

$$
Q F(S)=\left\{\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C} \mid\right.
$$ injective, $\rho\left(\pi_{1}(S)\right)$ quasi-Fuchsian $\} / \sim_{\text {conj. }}$.

Outline

S : once punctured torus $\alpha \subset S$: essential simple closed curve

$$
Q F(S)=\left\{\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C} \mid\right.
$$ injective, $\rho\left(\pi_{1}(S)\right)$ quasi-Fuchsian $\} / \sim_{\text {conj }}$.

$\lambda_{\alpha}: Q F(S) \rightarrow \mathbb{C} / 2 \pi \sqrt{-1} \mathbb{Z}:$ the (complex) length of α

Outline

S : once punctured torus $\alpha \subset S:$ essential simple closed curve

$\operatorname{QF}(S)=\left\{\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C} \mid\right.$ injective, $\rho\left(\pi_{1}(S)\right)$ quasi-Fuchsian $\} / \sim_{\text {conj. }}$.
$\lambda_{\alpha}: Q F(S) \rightarrow \mathbb{C} / 2 \pi \sqrt{-1} \mathbb{Z}:$ the (complex) length of α
For $\ell>0$, consider a slice of $Q F(S)$

$$
Q F(\ell)=\left\{\rho \in Q F(S) \mid \lambda_{\alpha}(\rho)=\ell\right\} .
$$

Outline

S : once punctured torus $\alpha \subset S:$ essential simple closed curve

$Q F(S)=\left\{\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C} \mid\right.$ injective, $\rho\left(\pi_{1}(S)\right)$ quasi-Fuchsian $\} / \sim_{\text {conj. }}$.
$\lambda_{\alpha}: Q F(S) \rightarrow \mathbb{C} / 2 \pi \sqrt{-1} \mathbb{Z}:$ the (complex) length of α
For $\ell>0$, consider a slice of $Q F(S)$

$$
Q F(\ell)=\left\{\rho \in Q F(S) \mid \lambda_{\alpha}(\rho)=\ell\right\} .
$$

This can be regarded as a subset of

$$
\{\tau \in \mathbb{C} \mid-\pi<\operatorname{lm}(\tau) \leq \pi\} .
$$

Outline

$Q F(\ell)$ looks like this:

Interested in the shape of $Q F(\ell)$ as ℓ getting longer.

Outline

1. Basics on Kleinian (once punctured torus) groups
2. Linear slices \& Main theorem
3. Complex projective structures and complex earthquake
4. Proof of the main theorem

With many pictures ...

Basics (Hyperbolic space)

$\mathbb{H}^{3}=\left\{(z, t) \mid z \in \mathbb{C}, t \in \mathbb{R}_{>0}\right\}:$ 3-dim hyperbolic space

Basics (Hyperbolic space)

$\mathbb{H}^{3}=\left\{(z, t) \mid z \in \mathbb{C}, t \in \mathbb{R}_{>0}\right\}$: 3-dim hyperbolic space $\{t=0\}=\mathbb{C} \cup\{\infty\}=\mathbb{C} P^{1}$: its boundary

Basics (Hyperbolic space)

$\mathbb{H}^{3}=\left\{(z, t) \mid z \in \mathbb{C}, t \in \mathbb{R}_{>0}\right\}:$ 3-dim hyperbolic space $\{t=0\}=\mathbb{C} \cup\{\infty\}=\mathbb{C} P^{1}$: its boundary $\mathrm{PSL}_{2} \mathbb{C}=\mathrm{SL}_{2} \mathbb{C} /\{ \pm 1\}$ acts on $\mathbb{C} P^{1}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d} \quad\left(z \in \mathbb{C} P^{1}=\mathbb{C} \cup\{\infty\}\right)
$$

Basics (Hyperbolic space)

$\mathbb{H}^{3}=\left\{(z, t) \mid z \in \mathbb{C}, t \in \mathbb{R}_{>0}\right\}:$ 3-dim hyperbolic space $\{t=0\}=\mathbb{C} \cup\{\infty\}=\mathbb{C} P^{1}$: its boundary $\mathrm{PSL}_{2} \mathbb{C}=\mathrm{SL}_{2} \mathbb{C} /\{ \pm 1\}$ acts on $\mathbb{C} P^{1}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d} \quad\left(z \in \mathbb{C} P^{1}=\mathbb{C} \cup\{\infty\}\right)
$$

This action extends to the interior \mathbb{H}^{3} isometrically.

Basics (Hyperbolic space)

$\mathbb{H}^{3}=\left\{(z, t) \mid z \in \mathbb{C}, t \in \mathbb{R}_{>0}\right\}:$ 3-dim hyperbolic space
$\{t=0\}=\mathbb{C} \cup\{\infty\}=\mathbb{C} P^{1}$: its boundary
$\mathrm{PSL}_{2} \mathbb{C}=\mathrm{SL}_{2} \mathbb{C} /\{ \pm 1\}$ acts on $\mathbb{C} P^{1}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d} \quad\left(z \in \mathbb{C} P^{1}=\mathbb{C} \cup\{\infty\}\right)
$$

This action extends to the interior \mathbb{H}^{3} isometrically.
$\Gamma<\mathrm{PSL}_{2} \mathbb{C}:$ torsion free discrete subgroup
$\Rightarrow M=\mathbb{H}^{3} / \Gamma$ is a complete hyperbolic 3-manifold s.t. $\pi_{1}(M) \cong \Gamma$

Basics (Deformation space)

$S=S_{g, n}:$ genus g, n punctured surface $(\chi(S)<0)$

Basics (Deformation space)

$S=S_{g, n}$: genus g, n punctured surface $(\chi(S)<0)$ $X(S)=\left\{\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C} \mid\right.$ irreducible, preserving parabolics $\} / \sim_{\text {conj }}$.
: the character variety

Basics (Deformation space)

$S=S_{g, n}$: genus g, n punctured surface $(\chi(S)<0)$ $X(S)=\left\{\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C} \mid\right.$ irreducible, preserving parabolics $\} / \sim_{\text {conj }}$.
: the character variety
$A H(S)=\{[\rho] \in X(S) \mid$ faithful, discrete image $\}$

Basics (Deformation space)

$S=S_{g, n}$: genus g, n punctured surface $(\chi(S)<0)$ $X(S)=\left\{\rho: \pi_{1}(S) \rightarrow \mathrm{PSL}_{2} \mathbb{C} \mid\right.$ irreducible, preserving parabolics $\} / \sim_{\text {conj }}$.
: the character variety
$A H(S)=\{[\rho] \in X(S) \mid$ faithful, discrete image $\}$

If $\rho \in A H(S)$, then $\mathbb{H}^{3} / \rho\left(\pi_{1}(S)\right)$ is a complete hyperbolic 3 -manifold homotopy equivalent to S.
$A H(S)$ is the deformation space of such structures.

Basics (Limit sets)

$\Gamma<\mathrm{PSL}_{2} \mathbb{C}$: discrete subgroup
Fix a point $p \in \mathbb{H}^{3}$. The limit set of Γ is defined by
$\Lambda(\Gamma)=\left\{\right.$ accumulation points of $\Gamma \cdot p$ on $\left.\mathbb{C} P^{1}\right\}$.
$\left(\Lambda(\Gamma) \subset \mathbb{C} P^{1}\right.$, not depend on the choice of $\left.p\right)$

Basics (Limit sets)

$\Gamma<\mathrm{PSL}_{2} \mathbb{C}:$ discrete subgroup
Fix a point $p \in \mathbb{H}^{3}$. The limit set of Γ is defined by
$\Lambda(\Gamma)=\left\{\right.$ accumulation points of $\Gamma \cdot p$ on $\left.\mathbb{C} P^{1}\right\}$.
$\left(\Lambda(\Gamma) \subset \mathbb{C} P^{1}\right.$, not depend on the choice of $\left.p\right)$
Example (Fuchsian groups) If $\Gamma<\mathrm{PSL}_{2}(\mathbb{R}), \Gamma$ preserves $\mathbb{H}^{2}\left(\subset \mathbb{H}^{3}\right)$, thus $\Lambda(\Gamma)$ is a subset of $\mathbb{R} \cup\{\infty\}$ (a 'round circle' in $\left.\mathbb{C} P^{1}\right)$.

Basics (Quasi-Fuchsian representations)

 We can deform a Fuchsian rep a little in $\mathrm{PSL}_{2} \mathrm{C}$. The limit set is no longer a round circle, but may be $\cong S^{1}$.

Basics (Quasi-Fuchsian representations)

 We can deform a Fuchsian rep a little in $\mathrm{PSL}_{2} \mathbb{C}$. The limit set is no longer a round circle, but may be $\cong S^{1}$.

Definition

Let $\rho \in A H(S)$. If the limit set $\Lambda\left(\rho\left(\pi_{1}(S)\right)\right)$ is homeomorphic to S^{1}, ρ is called quasi-Fuchsian.

$$
Q F(S)=\{\rho \in A H(S) \mid \rho \text { is quasi-Fuchsian. }\}
$$

Basics (Known properties)

Known facts

- $Q F(S) \subset X(S)$ open subset

Basics (Known properties)

Known facts

- $Q F(S) \subset X(S)$ open subset
- $Q F(S) \cong \mathcal{T}(S) \times \mathcal{T}(\bar{S})$, where $\mathcal{T}(S)$ is the Teichmüller space of S. $\left(\mathcal{T}\left(S_{g, n}\right) \cong \mathbb{R}^{6 g-6+2 n}\right)$

Basics (Known properties)

Known facts

- $Q F(S) \subset X(S)$ open subset
- $Q F(S) \cong \mathcal{T}(S) \times \mathcal{T}(\bar{S})$, where $\mathcal{T}(S)$ is the Teichmüller space of S. $\left(\mathcal{T}\left(S_{g, n}\right) \cong \mathbb{R}^{6 g-6+2 n}\right)$
- $\overline{Q F(S)}=A H(S)$: density theorem

Basics (Known properties)

Known facts

- $Q F(S) \subset X(S)$ open subset
- $Q F(S) \cong \mathcal{T}(S) \times \mathcal{T}(\bar{S})$, where $\mathcal{T}(S)$ is the Teichmüller space of S. $\left(\mathcal{T}\left(S_{g, n}\right) \cong \mathbb{R}^{6 g-6+2 n}\right)$
- $\overline{Q F(S)}=A H(S)$: density theorem
- $A H(S)$ is parametrized by its end invariants (Ending Lamination Theorem).

Basics (Known properties)

Known facts

- $Q F(S) \subset X(S)$ open subset
- $Q F(S) \cong \mathcal{T}(S) \times \mathcal{T}(\bar{S})$, where $\mathcal{T}(S)$ is the Teichmüller space of S. $\left(\mathcal{T}\left(S_{g, n}\right) \cong \mathbb{R}^{6 g-6+2 n}\right)$
- $\overline{Q F(S)}=A H(S)$: density theorem
- $A H(S)$ is parametrized by its end invariants (Ending Lamination Theorem).

But the shape of $Q F(S)$ in $X(S)$ is very complicated! (e.g. self-bumping, $A H(S)$ is not locally connected.)

Basics (Complex length)

For $\gamma \in \pi_{1}(S), \rho \in X(S), \rho(\gamma)$ acts on \mathbb{H}^{3}.
Define the (complex) length by
$\lambda_{\gamma}(\rho)=($ translation length of $\rho(\gamma))$ $+\sqrt{-1}$ (rotation angle of $\rho(\gamma)$)
$\bmod 2 \pi \sqrt{-1} \mathbb{Z}$. This is characterized by

$$
\operatorname{tr}(\rho(\gamma))=2 \cosh \left(\frac{\lambda_{\gamma}(\rho)}{2}\right)
$$

Character variety

$S=S_{1,1}$: once punctured torus Fix $\alpha, \beta \in \pi_{1}(S)$ so that $[\alpha, \beta]$ is peripheral.

Character variety

$S=S_{1,1}$: once punctured torus Fix $\alpha, \beta \in \pi_{1}(S)$ so that $[\alpha, \beta]$ is peripheral.

The $\mathrm{SL}_{2} \mathbb{C}$-character variety $X_{S L}(S)$ is defined similarly as $\mathrm{PSL}_{2} \mathbb{C}$ case.

Character variety

$S=S_{1,1}$: once punctured torus Fix $\alpha, \beta \in \pi_{1}(S)$ so that $[\alpha, \beta]$ is peripheral.

The $\mathrm{SL}_{2} \mathbb{C}$-character variety $X_{S L}(S)$ is defined similarly as $\mathrm{PSL}_{2} \mathbb{C}$ case. As affine varieties, we have

$$
X_{S L}(S) \cong\left\{(x, y, z) \in \mathbb{C}^{3} \mid x^{2}+y^{2}+z^{2}=x y z\right\}
$$

via

$$
[\rho] \mapsto(\operatorname{tr}(\rho(\alpha)), \operatorname{tr}(\rho(\beta)), \operatorname{tr}(\rho(\alpha \beta)))
$$

Character variety

$S=S_{1,1}$: once punctured torus Fix $\alpha, \beta \in \pi_{1}(S)$ so that $[\alpha, \beta]$ is peripheral.

The $\mathrm{SL}_{2} \mathbb{C}$-character variety $X_{S L}(S)$ is defined similarly as $\mathrm{PSL}_{2} \mathbb{C}$ case. As affine varieties, we have

$$
X_{S L}(S) \cong\left\{(x, y, z) \in \mathbb{C}^{3} \mid x^{2}+y^{2}+z^{2}=x y z\right\}
$$

via

$$
[\rho] \mapsto(\operatorname{tr}(\rho(\alpha)), \operatorname{tr}(\rho(\beta)), \operatorname{tr}(\rho(\alpha \beta)))
$$

$X(S)$ is obtained as a quotient of $X_{S L}(S)$ by the action of $\mathbb{Z} / 2 \mathbb{Z}$ generated by

$$
(x, y, z)=(-x,-y, z), \quad(x, y, z)=(x,-y,-z)
$$

Linear slices

Any essential simple closed curve on $S=S_{1,1}$ is represented by a primitive element $p[\alpha]+q[\beta] \in H_{1}(S ; \mathbb{Z})$. Regard it as $p / q \in \mathbb{Q} \cup\{\infty\}$.

Linear slices

Any essential simple closed curve on $S=S_{1,1}$ is represented by a primitive element $p[\alpha]+q[\beta] \in H_{1}(S ; \mathbb{Z})$. Regard it as $p / q \in \mathbb{Q} \cup\{\infty\}$.

For p / q, take $\gamma_{p / q} \in \pi_{1}(S)$ freely homotopic to p / q.
Define the length function $\lambda_{p / q}: X(S) \rightarrow \mathbb{C} / 2 \pi \sqrt{-1} \mathbb{Z}$ by $\lambda_{p / q}(\rho)=\lambda_{\gamma_{p / q}}(\rho)$.

Linear slices

Any essential simple closed curve on $S=S_{1,1}$ is represented by a primitive element $p[\alpha]+q[\beta] \in H_{1}(S ; \mathbb{Z})$. Regard it as $p / q \in \mathbb{Q} \cup\{\infty\}$.

For p / q, take $\gamma_{p / q} \in \pi_{1}(S)$ freely homotopic to p / q.
Define the length function $\lambda_{\rho / q}: X(S) \rightarrow \mathbb{C} / 2 \pi \sqrt{-1} \mathbb{Z}$ by $\lambda_{p / q}(\rho)=\lambda_{\gamma_{p / q}}(\rho)$.

Definition

For $\ell>0$, let

$$
X(\ell)=\left\{\rho \in X(S) \mid \lambda_{1 / 0}(\rho)=\ell\right\}
$$

$X(\ell)$ is a slice of $X(S)$ on which (cpx length of $\alpha) \equiv \ell$.

Complex Fenchel-Nielsen coordinates

For $\ell>0$, define a map

$$
\{\tau \in \mathbb{C} \mid-\pi<\operatorname{lm}(\tau) \leq \pi\} \xrightarrow{\cong} X(\ell)
$$

by

$$
\tau \mapsto\left(2 \cosh (\ell / 2), \frac{2 \cosh (\tau / 2)}{\tanh (\ell / 2)}, \frac{2 \cosh ((\tau+\ell) / 2)}{\tanh (\ell / 2)}\right) .
$$

This gives a bijection. (Recall $\operatorname{tr} \rho(\alpha)=2 \cosh \left(\lambda_{1 / 0} / 2\right)$.)

Complex Fenchel-Nielsen coordinates

For $\ell>0$, define a map

$$
\{\tau \in \mathbb{C} \mid-\pi<\operatorname{lm}(\tau) \leq \pi\} \xrightarrow{\cong} X(\ell)
$$

by

$$
\tau \mapsto\left(2 \cosh (\ell / 2), \frac{2 \cosh (\tau / 2)}{\tanh (\ell / 2)}, \frac{2 \cosh ((\tau+\ell) / 2)}{\tanh (\ell / 2)}\right)
$$

This gives a bijection. (Recall $\operatorname{tr} \rho(\alpha)=2 \cosh \left(\lambda_{1 / 0} / 2\right)$.)

Note

If we let $\tau=t+\sqrt{-1} b$, t is the twisting distance and b is the bending angle along α.

Linear slices of $Q F(S)$

Definition
For $\ell>0$, define

$$
Q F(\ell)=Q F(S) \cap X(\ell)
$$

Linear slices of $Q F(S)$

Definition
For $\ell>0$, define

$$
Q F(\ell)=Q F(S) \cap X(\ell)
$$

Linear slices of $Q F(S)$

Definition
For $\ell>0$, define

$$
Q F(\ell)=Q F(S) \cap X(\ell)
$$

Linear slices of $Q F(S)$

Definition
For $\ell>0$, define

$$
Q F(\ell)=Q F(S) \cap X(\ell)
$$

Linear slices of $Q F(S)$

Facts

- The Dehn twist along α acts on $X(\ell)$ as

$$
\tau \mapsto \tau+\ell . \quad \text { (translation) }
$$

Linear slices of $Q F(S)$

Facts

- The Dehn twist along α acts on $X(\ell)$ as

$$
\tau \mapsto \tau+\ell . \quad \text { (translation) }
$$

- The real line $\{\tau \mid \operatorname{Im}(\tau)=0\}$ corresponds to the Fuchsian representations satisfying $\lambda_{\alpha}=\ell$.

Linear slices of $Q F(S)$

Facts

- The Dehn twist along α acts on $X(\ell)$ as

$$
\tau \mapsto \tau+\ell . \quad \text { (translation) }
$$

- The real line $\{\tau \mid \operatorname{Im}(\tau)=0\}$ corresponds to the Fuchsian representations satisfying $\lambda_{\alpha}=\ell$.
- By McMullen's disk convexity of $Q F(S)$, $Q F(\ell)$ is a union of (open) disks.

Linear slices of $Q F(S)$

Facts

- The Dehn twist along α acts on $X(\ell)$ as

$$
\tau \mapsto \tau+\ell . \quad \text { (translation) }
$$

- The real line $\{\tau \mid \operatorname{Im}(\tau)=0\}$ corresponds to the Fuchsian representations satisfying $\lambda_{\alpha}=\ell$.
- By McMullen's disk convexity of $Q F(S)$, $Q F(\ell)$ is a union of (open) disks.

Linear slices of $Q F(S)$

For any $\ell>0$, there exists a unique standard component containing Fuchsian representations. As pictures suggest;

Linear slices of $Q F(S)$

For any $\ell>0$, there exists a unique standard component containing Fuchsian representations. As pictures suggest;
Theorem (Komori-Yamashita, 2012)
QF (ℓ) has only one component if ℓ is sufficiently small, has more than one component if ℓ is sufficiently large.

Linear slices of $Q F(S)$

For any $\ell>0$, there exists a unique standard component containing Fuchsian representations. As pictures suggest;
Theorem (Komori-Yamashita, 2012)
QF (ℓ) has only one component if ℓ is sufficiently small, has more than one component if ℓ is sufficiently large.

Today, we will give another proof for the latter part, and give refined results.

More on $Q F(S)$

The standard component was extensively studied by Keen-Series, they called it the BM-slice (denote BM).

More on $Q F(S)$

The standard component was extensively studied by Keen-Series, they called it the BM-slice (denote $B M$). For $\rho \in Q F(S)$, let $p l^{ \pm}(\rho) \in \mathcal{M} \mathcal{L}(S)$ be the bending measures on the convex hull boundary.

More on $Q F(S)$

The standard component was extensively studied by Keen-Series, they called it the BM-slice (denote $B M$). For $\rho \in Q F(S)$, let $p l^{ \pm}(\rho) \in \mathcal{M} \mathcal{L}(S)$ be the bending measures on the convex hull boundary.
Theorem (Keen-Series, 2004)
$\rho \in B M$ iff one of $\left[\left.p\right|^{ \pm}\right]$coincides with α in $\mathcal{P M} \mathcal{L}(S)$.

More on $Q F(S)$

The standard component was extensively studied by Keen-Series, they called it the BM-slice (denote $B M$).
For $\rho \in Q F(S)$, let $p l^{ \pm}(\rho) \in \mathcal{M} \mathcal{L}(S)$ be the bending measures on the convex hull boundary.
Theorem (Keen-Series, 2004)
$\rho \in B M$ iff one of $\left[\left.p\right|^{ \pm}\right]$coincides with α in $\mathcal{P M} \mathcal{L}(S)$.
Roughly, a representation in $B M$ is obtained from a Fuchsian one by bending along α continuously.

More on $Q F(S)$

 Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

 Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

More on $Q F(S)$

Recall $\quad \tau=$ (twisting dist.) $+\sqrt{-1}$ (bending angle).

In the BM-slice of $Q F(2.0)$.

Complex projective structures

S : surface $(\chi(S)<0)$

Definition

A complex projective structure or $\mathbb{C} P^{1}$-structure on S is a geometric structure locally modelled on $\mathbb{C} P^{1}$
 with transition functions in $\mathrm{PSL}_{2} \mathbb{C}$.

Complex projective structures

S : surface $(\chi(S)<0)$

Definition

A complex projective structure or $\mathbb{C} P^{1}$-structure on S is a geometric structure locally modelled on $\mathbb{C} P^{1}$ with transition functions in $\mathrm{PSL}_{2} \mathbb{C}$.

(If S has punctures, assume some boundary conditions.)

Complex projective structures
 S : surface $(\chi(S)<0)$

Definition

A complex projective structure or $\mathbb{C} P^{1}$-structure on S is a geometric structure locally modelled on $\mathbb{C} P^{1}$
 with transition functions in $\mathrm{PSL}_{2} \mathbb{C}$.
(If S has punctures, assume some boundary conditions.)

Example (Fuchsian uniformization)

A hyperbolic str on S gives an identification $\widetilde{S} \cong \mathbb{H}^{2}$. Since $\mathbb{H}^{2} \subset \mathbb{C} P^{1}$, this gives a $\mathbb{C} P^{1}$-str.

Complex projective structures

Similarly as Teichmüller space, we can define $P(S)$ the set of marked $\mathbb{C} P^{1}$-structures on S.

Complex projective structures

Similarly as Teichmüller space, we can define $P(S)$ the set of marked $\mathbb{C} P^{1}$-structures on S.

By analytic continuation, we have a holonomy map

$$
\text { hol : } P(S) \rightarrow X(S)
$$

This is known to be a local homeomorphism.

Grafting

We can construct another $\mathbb{C} P^{1}$-str from a Fuchsian uniformization.
X : a hyp str on $S, \quad \alpha \subset X$: a simple closed geodesic.

Grafting

We can construct another $\mathbb{C} P^{1}$-str from a Fuchsian uniformization.
X : a hyp str on $S, \quad \alpha \subset X$: a simple closed geodesic. Let $\operatorname{Gr}_{b \cdot \alpha}(X)$ be the $\mathbb{C} P^{1}$-str obtained from X by inserting a height b annulus along α.

Grafting

We can construct another $\mathbb{C} P^{1}$-str from a Fuchsian uniformization.
X : a hyp str on $S, \quad \alpha \subset X$: a simple closed geodesic. Let $\operatorname{Gr}_{b \cdot \alpha}(X)$ be the $\mathbb{C} P^{1}$-str obtained from X by inserting a height b annulus along α.

In the universal cover \tilde{X}, the local picture looks like:

Grafting

We can construct another $\mathbb{C} P^{1}$-str from a Fuchsian uniformization.
X : a hyp str on $S, \quad \alpha \subset X:$ a simple closed geodesic. Let $\operatorname{Gr}_{b \cdot \alpha}(X)$ be the $\mathbb{C} P^{1}$-str obtained from X by inserting a height b annulus along α.

In the universal cover \tilde{X}, the local picture looks like:

But there are infinitely many lifts of $\alpha \cdots$

Grafting

Grafting

The grafting operation $\mathrm{Gr}_{b \cdot \alpha}: \mathcal{T}(S) \rightarrow P(S)$ can be generalized for measured laminations.
Theorem (Thurston, Kamishima-Tan)

$$
\begin{aligned}
\mathrm{Gr}: \mathcal{M} \mathcal{L}(S) \times \mathcal{T}(S) & \rightarrow P(S) \\
(\mu, X) & \mapsto
\end{aligned} \operatorname{Gr}_{\mu}(X)
$$

is a homeomorphism (Thurston coordinates).
$\mathbb{C} P^{1}$-structures with q-F holonomy
$Q_{0}=\left\{\right.$ marked $\mathbb{C} P^{1}$-strs with $\mathrm{q}-\mathrm{F}$ holonomy and injective developing maps $\} \subset P(S)$

$\mathbb{C} P^{1}$-structures with q-F holonomy

$Q_{0}=\left\{\right.$ marked $\mathbb{C} P^{1}$-strs with $\mathrm{q}-\mathrm{F}$ holonomy and injective developing maps $\} \subset P(S)$
$\mathcal{M} \mathcal{L}_{\mathbb{Z}}(S)$: the set of multicurves with integral weights.

$\mathbb{C} P^{1}$-structures with q-F holonomy

$Q_{0}=\left\{\right.$ marked $\mathbb{C} P^{1}$-strs with q-F holonomy and injective developing maps $\} \subset P(S)$
$\mathcal{M} \mathcal{L}_{\mathbb{Z}}(S)$: the set of multicurves with integral weights.
For $\mu \in \mathcal{M} \mathcal{L}_{\mathbb{Z}}(S)$, let Q_{μ} be the set of $\mathbb{C} P^{1}$-strs obtained from Q_{0} by $2 \pi \mu$-grafting. (Remark $Q_{\mu} \cong Q_{0}$.)

$\mathbb{C} P^{1}$-structures with q-F holonomy

$Q_{0}=\left\{\right.$ marked $\mathbb{C} P^{1}$-strs with q-F holonomy and injective developing maps $\} \subset P(S)$
$\mathcal{M} \mathcal{L}_{\mathbb{Z}}(S)$: the set of multicurves with integral weights.
For $\mu \in \mathcal{M} \mathcal{L}_{\mathbb{Z}}(S)$, let Q_{μ} be the set of $\mathbb{C} P^{1}$-strs obtained from Q_{0} by $2 \pi \mu$-grafting. (Remark $Q_{\mu} \cong Q_{0}$.)
Theorem (Goldman)

$$
\mathrm{hol}^{-1}(Q F(S))=\bigsqcup_{\mu \in \mathcal{M} \mathcal{L}_{\mathbb{Z}}(S)} Q_{\mu}
$$

The component Q_{0} is called standard, $Q_{\mu}(\mu \neq 0)$ exotic.

Complex Earthquake

Let $\quad \overline{\mathbb{H}}=\{\tau=t+\sqrt{-1} b \in \mathbb{C} \mid b \geq 0\}$.

Complex Earthquake

Let $\quad \overline{\mathbb{H}}=\{\tau=t+\sqrt{-1} b \in \mathbb{C} \mid b \geq 0\} . \quad$ Fix $\ell>0$.

Complex Earthquake

Let $\quad \overline{\mathbb{H}}=\{\tau=t+\sqrt{-1} b \in \mathbb{C} \mid b \geq 0\} . \quad$ Fix $\ell>0$.

Let twere $=$

Complex Earthquake

Let $\quad \overline{\mathbb{H}}=\{\tau=t+\sqrt{-1} b \in \mathbb{C} \mid b \geq 0\} . \quad$ Fix $\ell>0$.

Let $\mathrm{tw}_{\mathrm{t} \cdot \alpha}\left(X_{\ell}\right)=(\alpha(\beta) \in \mathcal{T}(S)$.
Define Eq: $\overline{\mathbb{H}} \rightarrow P(S)$ by

$$
\mathrm{Eq}(t+\sqrt{-1} b)=\operatorname{Gr}_{b \cdot \alpha}\left(\mathrm{tw}_{t \cdot \alpha}\left(X_{\ell}\right)\right) \in P(S)
$$

By Thurston coords, we can regard $\overline{\mathbb{H}} \subset P(S)$.

Complex Earthquake

Let $\quad \overline{\mathbb{H}}=\{\tau=t+\sqrt{-1} b \in \mathbb{C} \mid b \geq 0\} . \quad$ Fix $\ell>0$.

Let $\operatorname{tw}_{t \cdot \alpha}\left(X_{\ell}\right)=(\alpha$,
Define Eq : $\overline{\mathbb{H}} \rightarrow P(S)$ by

$$
\mathrm{Eq}(t+\sqrt{-1} b)=\operatorname{Gr}_{b \cdot \alpha}\left(\mathrm{tw}_{t \cdot \alpha}\left(X_{\ell}\right)\right) \in P(S)
$$

By Thurston coords, we can regard $\overline{\mathbb{H}} \subset P(S)$.
Simply denote the image of $\overline{\mathbb{H}}$ by $\mathrm{Eq}(\ell)$.

Complex Earthquake

By construction, hol is the natural projection:

Complex Earthquake

By construction, hol is the natural projection:

$\{\tau \mid \operatorname{lm}(\tau) \geq 0\}$

$$
\{\tau \mid-\pi<\underset{\psi}{\operatorname{Im}}(\tau) \leq \pi\}
$$

$$
\tau \bmod 2 \pi \sqrt{-1}
$$

We are interested in $Q F(\ell) \subset X(\ell)$, so consider

$$
\begin{aligned}
\mathrm{hol}^{-1}(Q F(\ell)) & =\operatorname{hol}^{-1}(X(\ell) \cap Q F(S)) \\
& =\mathrm{Eq}(\ell) \cap \mathrm{hol}^{-1}(Q F(S)) .
\end{aligned}
$$

Complex Earthquake

By Goldman's Theorem, we have
$\mathrm{Eq}(\ell) \cap \mathrm{hol}^{-1}(Q F(S))=\quad \bigsqcup \quad \mathrm{Eq}(\ell) \cap Q_{\mu}$.

Complex Earthquake

hol maps each component of $\mathrm{Eq}(\ell) \cap Q_{\mu}$ into a comp of $Q F(\ell)$.

Complex Earthquake

hol maps each component of $\mathrm{Eq}(\ell) \cap Q_{\mu}$ into a comp of $Q F(\ell)$. Thus if

$$
\mathrm{Eq}(\ell) \cap Q_{\mu} \neq \emptyset
$$

for some $\mu \notin\{0, \alpha, 2 \alpha, \cdots\}$, $Q F(\ell)$ has a comp other than the standard one $B M$.

Complex Earthquake

 hol maps each component of $\mathrm{Eq}(\ell) \cap Q_{\mu}$ into a comp of $Q F(\ell)$. Thus if$$
\mathrm{Eq}(\ell) \cap Q_{\mu} \neq \emptyset
$$

for some $\mu \notin\{0, \alpha, 2 \alpha, \cdots\}$, $Q F(\ell)$ has a comp other than the standard one BM. Moreover,

Prop (K.)

$$
E q(\ell) \cap \operatorname{hol}^{-1}(B M)=\bigsqcup_{k \geq 0} E q(\ell) \cap Q_{k \cdot \alpha}
$$

for any $\ell>0$.

Existence of exotic components in $\mathrm{Eq}(\ell)$

 We need to find $\mu \notin\{0, \alpha, 2 \alpha, \cdots\}$ s.t. $\mathrm{Eq}(\ell) \cap Q_{\mu} \neq \emptyset$ for sufficiently large $\ell>0$. Consider the case $\mu=\beta$.
Existence of exotic components in $\mathrm{Eq}(\ell)$

 We need to find $\mu \notin\{0, \alpha, 2 \alpha, \cdots\}$ s.t. $\mathrm{Eq}(\ell) \cap Q_{\mu} \neq \emptyset$ for sufficiently large $\ell>0$. Consider the case $\mu=\beta$.Let D_{β} be the Dehn twist along β. Fix $X \in \mathcal{T}(S)$.

Existence of exotic components in $\mathrm{Eq}(\ell)$

 We need to find $\mu \notin\{0, \alpha, 2 \alpha, \cdots\}$ s.t. $\mathrm{Eq}(\ell) \cap Q_{\mu} \neq \emptyset$ for sufficiently large $\ell>0$. Consider the case $\mu=\beta$.Let D_{β} be the Dehn twist along β. Fix $X \in \mathcal{T}(S)$.
Consider a sequence in $P(S) \cong \mathcal{M} \mathcal{L}(S) \times \mathcal{T}(S)$

$$
\left(\frac{2 \pi}{n} D_{\beta}^{n}(\alpha), X\right)
$$

which converges to $(2 \pi \beta, X) \in Q_{\beta}$ as $n \rightarrow \infty$.

Existence of exotic components in $\mathrm{Eq}(\ell)$

 We need to find $\mu \notin\{0, \alpha, 2 \alpha, \cdots\}$ s.t. $\mathrm{Eq}(\ell) \cap Q_{\mu} \neq \emptyset$ for sufficiently large $\ell>0$. Consider the case $\mu=\beta$.Let D_{β} be the Dehn twist along β. Fix $X \in \mathcal{T}(S)$.
Consider a sequence in $P(S) \cong \mathcal{M} \mathcal{L}(S) \times \mathcal{T}(S)$

$$
\left(\frac{2 \pi}{n} D_{\beta}^{n}(\alpha), X\right)
$$

which converges to $(2 \pi \beta, X) \in Q_{\beta}$ as $n \rightarrow \infty$.
Thus $\left(\frac{2 \pi}{n} D_{\beta}^{n}(\alpha), X\right) \in Q_{\beta}$ for large n.

Existence of exotic components in $\mathrm{Eq}(\ell)$

 We need to find $\mu \notin\{0, \alpha, 2 \alpha, \cdots\}$ s.t. $\mathrm{Eq}(\ell) \cap Q_{\mu} \neq \emptyset$ for sufficiently large $\ell>0$. Consider the case $\mu=\beta$.Let D_{β} be the Dehn twist along β. Fix $X \in \mathcal{T}(S)$.
Consider a sequence in $P(S) \cong \mathcal{M} \mathcal{L}(S) \times \mathcal{T}(S)$

$$
\left(\frac{2 \pi}{n} D_{\beta}^{n}(\alpha), X\right)
$$

which converges to $(2 \pi \beta, X) \in Q_{\beta}$ as $n \rightarrow \infty$.
Thus $\left(\frac{2 \pi}{n} D_{\beta}^{n}(\alpha), X\right) \in Q_{\beta}$ for large n.
Apply D_{β}^{-n}, then $\left(\frac{2 \pi}{n} \alpha, D_{\beta}^{-n}(X)\right) \in Q_{\beta}$ for large n.

Existence of exotic components in $\mathrm{Eq}(\ell)$

 We need to find $\mu \notin\{0, \alpha, 2 \alpha, \cdots\}$ s.t. $\mathrm{Eq}(\ell) \cap Q_{\mu} \neq \emptyset$ for sufficiently large $\ell>0$. Consider the case $\mu=\beta$.Let D_{β} be the Dehn twist along β. Fix $X \in \mathcal{T}(S)$.
Consider a sequence in $P(S) \cong \mathcal{M} \mathcal{L}(S) \times \mathcal{T}(S)$

$$
\left(\frac{2 \pi}{n} D_{\beta}^{n}(\alpha), X\right)
$$

which converges to $(2 \pi \beta, X) \in Q_{\beta}$ as $n \rightarrow \infty$.
Thus $\left(\frac{2 \pi}{n} D_{\beta}^{n}(\alpha), X\right) \in Q_{\beta}$ for large n.
Apply D_{β}^{-n}, then $\left(\frac{2 \pi}{n} \alpha, D_{\beta}^{-n}(X)\right) \in Q_{\beta}$ for large n.
But if we let $\ell=\ell_{\alpha}\left(D_{\beta}^{-n}(X)\right),\left(\frac{2 \pi}{n} \alpha, D_{\beta}^{-n}(X)\right) \in \mathrm{Eq}(\ell)$.

Final Remarks

- For $k \in \mathbb{N}$, we can show $\mathrm{Eq}(\ell) \cap Q_{k \cdot \beta} \neq \emptyset$ similarly for large ℓ by considering

Final Remarks

- For $k \in \mathbb{N}$, we can show $\mathrm{Eq}(\ell) \cap Q_{k \cdot \beta} \neq \emptyset$ similarly for large ℓ by considering

- Moreover we can use $\mu \in \mathcal{M} \mathcal{L}(S)_{\mathbb{Z}}$ instead of β provided $i(\mu, \alpha) \neq 0$.

