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1. Introduction - Outline -
K ⊂ S3 : a knot in S3

M = S3 \ N(K ) : knot exterior
(more generally, cpt. ori. 3-mfd with torus boundary)

X (M) = {homom. π1(M)→ SL2C “up to conjugation”}

is an affine algebraic set over C, called the character variety.

C ⊂ X (M) : irreducible (affine) curve (possibly singular)

C̃ : smooth projective curve birationally equiv. to C

(ϕ : C̃
birat.−−−→ C )

A point p ∈ C̃ at which ϕ is not defined is called an ideal
point.

Culler-Shalen theory (in a word)

Construct an incompressible surface in M from an ideal
point.
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1. Introduction - incompressible surfaces -
M : a cpt. ori. 3-mfd with boundary

A surface S ⊂ M is properly embedded if S ∩ ∂M = ∂S ,
and S intersects ∂M transversely.

We assume that S is 2-sided in M and does not have S2,
D2 components.

Definition

A disk D ⊂ M s.t. D ∩ S = ∂D is called a compressing
disk if D ∩ S is an essential simple closed curve on S .

S is incompressible if each component of S has no
compressing disk.

S is called essential if it is incompressible and not
boundary parallel.

By the loop theorem, a 2-sided surface S ⊂ M is
incompressible if and only if π1(S)→ π1(M) is injective
(for each component).
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1. Introduction - Application -
Today we focus on the application of Culler-Shalen theory
to the Cyclic Surgery Theorem.

Let M = S3 \ N(K ) be a knot exterior. We denote the
intersection number of two slopes α,β ⊂ ∂M by ∆(α,β).

The Dehn filling of M along a slope α is denoted by M(α).

Cyclic Surgery Theorem (Culler-Gordon-Luecke-Shalen)

Let K be a non-torus knot and M its exterior.
If π1(M(α)) and π1(M(β)) are cyclic∗, ∆(α,β) ≤ 1.

* Including the trivial group and Z.

We identify the set of slopes on ∂M with Q ∪ {1/0}.

Since M(1/0) ∼= S3 has a cyclic π1, π1(M(α)) is cyclic only
if α is integral. There are at most two such slopes, and if
there are two they are consecutive.

(Ex: (−2, 3, 7)-pretzel has two cyclic slopes 18 and 19.)
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Plan

1. Intro

2. Basics on the character variety X (M) [§1, CS1]
3. Discrete valuations and algebraic curves

4. Tree actions and incompressible surfaces [§2, CS1]
5. Bass-Serre-Tits theory [§2, CS1]
6. Culler-Shalen’s main construction [CS1]

7. Cyclic Surgery Theorem [CGLS]
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2. Basics on the character variety

SL2C = {
(
a b
c d

)
| a, b, c , d ∈ C, ad − bc = 1}

Γ = 〈g1, · · · , gn | r1, · · · , rk 〉: a finitely presented group

R(Γ) = {ρ : Γ→ SL2C homomorphisms}

For a manifold M, we denote R(M) := R(π1(M)).

ρ ∈ R(Γ) is determined by

(ρ(g1), · · · , ρ(gn)) ∈ SL2Cn ⊂ C4n.

Conversely, any subset of SL2Cn satisfying ρ(ri ) =

(
1 0
0 1

)

(i = 1, · · · , k) gives a point of R(Γ).

Thus R(Γ) is an affine algebraic set (possibly reducible),
sometimes called the representation variety.
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2. Basics on the character variety
Consider the set of characters

{tr ρ | ρ ∈ R(Γ)}.
This has a structure of affine algebraic set as follows.

Let C[R(Γ)] be the set of regular functions∗ on R(Γ).
(* functions R(Γ)→ C written as polynomials of affine
coordinates of R(Γ).)

For γ ∈ Γ,
τγ(ρ) := tr ρ(γ)

is a regular function on R(Γ). Let T be the subring of R(Γ)
generated by τγ (γ ∈ Γ). We will see that T is the ring of
regular functions on {tr ρ | ρ ∈ R(Γ)}.

Proposition [Prop 1.4.1, CS1]

There exists a finite set {γ1}Ni=1 ⊂ Γ s.t. {τγi} generates T .

Idea. Using the trace identity trA trB = trAB + trAB−1,
any τg is written as a polynomial of finite τγi ’s. !
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2. Basics on the character variety
Proposition [Prop 1.4.1, CS1]

There exists a finite set {γi}Ni=1 ⊂ Γ s.t. {τγi} generates T .

For such a finite set {γi}Ni=1 ⊂ Γ, define a map
t : R(Γ)→ CN by

t(ρ) = (τγ1(ρ), · · · , τγN (ρ)).

By the proposition above, {tr ρ | ρ ∈ R(Γ)} is identified
with

X (Γ) := t(R(Γ))

Proposition [Prop 1.4.4, Cor 1.4.5, CS1]

X (Γ) = t(R(Γ)) is a (Zariski) closed subset in CN , thus
X (Γ) is an affine algebraic set.

Thus the set of the characters {tr ρ | ρ ∈ R(Γ)} has a
structure of affine algebraic set via X (Γ). X (Γ) is called the
character variety of Γ.

t : R(Γ)→ X (Γ) is a regular map.
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2. Basics on the character variety
ρ, ρ′ ∈ R(Γ) are conjugate if ∃A ∈ SL2C s.t.

ρ′(γ) = A−1ρ(γ)A (∀γ ∈ Γ)

Easy to see that ρ ∼ ρ′ =⇒ t(ρ) = t(ρ′)

ρ ∈ R(Γ) is reducible if there exists a line in C2 invariant
under ρ. Otherwise, irreducible.

Proposition [Cor 1.2.2, Lem 1.4.2, CS1]

ρ is reducible if and only if tr(ρ(γ)) = 2 (∀γ ∈ [Γ, Γ]).

The set of reducible representations in R(Γ) has the form
t−1(V ) for some closed algebraic subset of X (Γ).

Proposition [Prop 1.5.2, CS1]

Let ρ, ρ′ ∈ R(Γ) s.t. t(ρ) = t(ρ′). If ρ is irreducible, then ρ
and ρ′ are conjugate.

For an irreducible component R0 ⊂ R(Γ) containing an
irreducible representation, X0 = t(R0) is a closed set [Prop
1.4.4, CS1]. We have dimR0 = dimX0 + 3.
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3. Discrete valuations and algebraic curves
K : a field, K∗ = K \ {0}

v : K∗ → Z is called a discrete valuation if, for ∀x , y ∈ K∗

(i) v(xy) = v(x) + v(y),

(ii) v(x + y) ≥ min{v(x), v(y)}.
(Assume that v is surjective. Define v(0) = +∞.)

Example

K = C(t): 有理関数体, p ∈ C (also for p =∞ in CP1)
f (t) ∈ C(t) is written by using n ∈ Z, ci ∈ C, c0 0= 0 as

f (t) = (t − p)n(c0 + c1(t − p) + · · ·+ ck(t − p)k)

Then, vp(f ) = n is a discrete valuation.

Example

K = Q, p : prime
r ∈ Q is written as r = pn(c0 + c1p + · · ·+ ckpk)
(n ∈ Z, 0 ≤ ci ≤ p − 1, c0 0= 0)
Then vp(r) = n is a discrete valuation.
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3. Discrete valuations and algebraic curves
(i) v(xy) = v(x) + v(y), (ii) v(x + y) ≥ min{v(x), v(y)}.

Easy facts

(1) v(±1) = 0. (Thus v(−x) = v(x).)

(2) If v(x) < v(y), v(x + y) = v(x).

Proof.

(1) By v(1) = v(±1 · ±1) = v(±1) + v(±1).
(2) v(x + y) ≥ min(v(x), v(y)) = v(x).
Conversely, v(x) = v((x + y)− y) ≥ min(v(x + y), v(y)).
If v(x + y) > v(y), then v(x) ≥ v(y) contradicts
v(x) < v(y). Thus min(v(x + y), v(y)) = v(x + y),
therefore v(x) ≥ v(x + y).

O = {x ∈ K | v(x) ≥ 0} is a PID, and a local ring (i.e.
having a unique proper maximal ideal). O is called the
discrete valuation ring (DVR).

Actually, if we take π ∈ K s.t.v(π) = 1, any non-trivial ideal
has the form (πn), thus (π) is the unique maximal ideal.
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3. Discrete valuations and algebraic curves
Let X , Y be (affine, projective, or quasi-projective) variety
over C. Then the following are equivalent [Cor I.4.5, Har].

X and Y are isomorphic on some non-empty Zariski open
subsets.

The function fields C(X ), C(Y ) are isomorphic.

In these cases, X and Y are called birationally equivalent.

A 1-dimensional variety C (possibly singular) gives the
function field K = C(C ), which is a fin. gen. field of trans.
degree 1.

Conversely, for a given fin. gen. field K/C of trans. degree
1, the set of DVRs on K satisfying v(C∗) = 0 has a
structure of a smooth projective curve [§I.6, Har]. When
applied to K = C(C ), this gives a smooth projective curve
C̃ birat. equiv. to C .

[Har] Hartshorne, “Algebraic Geometry”, GTM 52.
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3. Discrete valuations and algebraic curves

Summary

For an algebraic curve C over C, we can construct a
smooth projective curve C̃ birationally equivalent to C as
the set of DVRs of C(C )/C.

Concisely,

{ points on C̃ } 1:1←→ { discrete valuations on C(C )/C }

A point on C̃ s.t. the birational map C̃ → C is not defined
is called an ideal point.

The valuation v associated to an ideal point of C can be
characterized by ∃f ∈ C[C ](⊂ C(C )) s.t. v(f ) < 0.
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4. Tree actions and incompressible surfaces
Let T be a tree (a connected graph with no cycle).

M : a 3-mfd, M̃ : the universal cover of M.

π1(M) ! T : an action without inverting edges

Consider a π1(M)-equivariant map f : M̃ → T .

For each mid point me of an edge e ⊂ T , we assume that f
is transverse to me . Then S̃ := f −1(me) is a surface in M̃.

Since f is equivariant, S̃ gives a surface S ⊂ M. In this
case, we say that S ⊂ M is associated with π1(M) ! T .

If π1(M) acts on T without inverting edges, S is 2-sided.

An action π1(M) ! T is called non-trivial if it has no
global fixed point of π1(M).

Proposition [Cor 1.3.7, CGLS], [Prop 2.3.1, CS1]

If π1(M) ! T is non-trivial, we can deform f so that the
associated surface is essential.
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4. Tree actions and incompressible surfaces

Proposition [Cor 1.3.7, CGLS], [Prop 2.3.1, CS1]

If π1(M) ! T is non-trivial, we can deform f so that the
associated surface is essential.

In the beginning of talk, I wrote that the CS theory

constructs an incompressible surface in M from an ideal
point.

But, actually,

the CS theory constructs a non-trivial tree action of π1(M).

The tree action (and the translation length) is uniquely
determined by the ideal point, but the associated essential
surface is not uniquely determined.
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5. Bass-Serre-Tits theory

K : a field, v : K∗ → Z : valuation

O = {x ∈ K | v(x) ≥ 0} (discrete valuation ring)

Let π ∈ K be an element with v(π) = 1.

We will construct a tree T associated with these data.

Let V = K 2. A lattice in V is a O-submodule L ⊂ V which
spans V over K .

Two lattices L, L′ are equivalent if ∃α ∈ K∗ s.t L′ = αL.

Bass-Serre tree T

Define a tree T by

Vertices: equivalent classes of lattices Λ = [L]
Edges: Λ, Λ′ are connected by an edge if ∃ lattices L, L′ s.t.

πL ⊂ L′ ⊂ L, (Λ = [L], Λ′ = [L′])

16 / 38

i ded M
'

PECC X (ハ )
v

し
たれつT

-



5. Bass-Serre-Tits theory

Bass-Serre tree T

Vertices: equivalent classes of lattices Λ = [L]
Edges: Λ, Λ′ are connected by an edge if ∃ lattices L, L′ s.t.

πL ⊂ L′ ⊂ L, (Λ = [L], Λ′ = [L′])

Let k = O/(π) (called the residue field). The above L′ ⊂ L
defines a line L′/πL ⊂ L/πL ∼= k2. Thus the link of a
vertex can be regarded as P1(k) (the projective line /k).

SL2K naturally acts on the tree T .

It is easy to see that SL2O fixes the lattice O2 ⊂ K 2, thus
fixing the vertex [O2].

Moreover, it is known that if a subgroup G ⊂ SL2K fixing a
vertex of the tree, then G is conjugate into SL2O by an
element of GL2K .

Further detail: [Se] Serre, “Trees”, Springer.
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6. Culler-Shalen’s main construction

M : a cpt. ori. 3-mfd with torus boundary

R(M) = Hom(π1(M), SL2C)

ρ ∈ R(M) is written as

ρ(γ) =

(
a(γ) b(γ)
c(γ) d(γ)

)
(γ ∈ π1(M)).

Thus we can regard a(γ), b(γ), c(γ), d(γ) ∈ C[R(M)]. This
gives a tautological representation P : π1M → SL2C[R(M)]

P(γ) =

(
a(γ) b(γ)
c(γ) d(γ)

)
∈ SL2C[R(M)].

For any closed subset D ⊂ R(M), the restriction of the
tautological representation gives P : π1M → SL2C[D].
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6. Culler-Shalen’s main construction
X (M) : the character variety

Take a curve C ⊂ X (M).

We can take an affine curve D ⊂ t−1(C ) ⊂ R(M) s.t. the
restriction t|D : D → C is not constant [proof of Prop 1.4.4,
CS1]. We remark that C(D)/C(C ) is a finite extension.

An ideal point of C gives a valuation v on C(C ), which
gives a valuation w on the finite extension C(D).

This gives the tree associated with C(D) and the action

π1(M)
P−→ SL2C[D] ⊂ SL2C(D) ! T .

(P : tautological rep.)

The Fundamental Theorem [Thm 2.2.1, CS1]

For an affine curve C ⊂ X (M) and the ideal point p, the
associated tree action is non-trivial.

Remark: A non-ideal point of C̃ also gives a tree action,
but it has a global fixed point, is not interesting.
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6. Culler-Shalen’s main construction

w ↔ q
!

!!

∈ D̃

!!

→ D

!!

⊂ R(M)

!!
v ↔ p ∈ C̃ → C ⊂ X (M)

For γ ∈ π1(M), v(τγ) ≥ 0 if and only if γ fixes a vertex of
T [Thm 2.2.1, CS1], [Prop 1.2.6, CGLS]. In this case, we
can deform γ avoiding the associated surface S .

Thus if ∃α,β ∈ π1(∂M) s.t. v(τα) ≥ 0 and v(τβ) < 0, α is
a boundary slope.

Moreover, the translation length of γ ∈ π1(M) is given by

min(0,−2w(τγ))

[Prop II.3.15, MS1].

[MS1] Morgan-Shalen. “Valuations, trees, and
degenerations of hyperbolic structures. I,” Ann. of Math.
(2) 120(1984), 401–476.
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7. Cyclic Surgery Theorem

In §1 of [CGLS], the following theorem is proved as an
application of the CS theory.

Theorem (CGLS, Thm 1.0.1)

Let M be a hyperbolic orientable 3-manifold with one torus
boundary. Let α, β be slopes s.t. π1(M(α)), π1(M(β)) are
cyclic. If neither α nor β is strict boundary slope then
∆(α,β) ≤ 1.

A slope ∂M is called a boundary slope if it is the boundary
of some essential surface. A slope is called a strict boundary
slope if it is the slope of some non-fiber essential surface.

Remark: The boundary slope detected by CS theory (more
generally, detected by a tree action) is a strict boundary
slope [CGLS, Prop 1.2.7].

The remaining part of the cyclic surgery theorem is proved
in [§2, CGLS] by using different techniques.
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7. Cyclic Surgery Theorem

Theorem (CGLS, Thm 1.0.1)

Let M be a hyperbolic orientable 3-manifold with one torus
boundary. Let α, β be slopes s.t. π1(M(α)), π1(M(β)) are
cyclic. If neither r nor s is strict boundary slope then
∆(α,β) ≤ 1.

A hyperbolic structure on M gives a discrete faithful
representation ρ0 : π1M → PSL2C = Isom+(H3), which is
irreducible.

There exists a lift ρ̃0 : π1M → SL2C of ρ0 [Prop 3.1.1,
CS1]. (Since the obstruction to the lifting is living in
H2(M;Z/2Z), trivial for knot exteriors.)
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7. Cyclic Surgery Theorem
Take an irreducible component R0 ⊂ R(M) containing ρ̃0
and X0 = t(R0).

Proposition [Prop 1.1.1, CGLS]

dimX0 = 1. For any non-trivial γ ∈ π1(∂M), τγ is
non-constant. (Recall τγ([ρ]) = tr ρ(γ) for [ρ] ∈ X0.)

dimX0 ≥ 1 is rather elementary [Prop 3.2.1, CS1], which is
the same line of argument as Theorem 5.6 of Thurston’s
Lecture Notes.

dimX0 ≤ 1 is shown in [Prop 2, CS2] using some local
rigidity result. The second assertion also follows from [Prop
2, CS2].

[CS2] Culler-Shalen, “Bounded, separating, incompressible
surfaces in knot manifolds,” Invent., 75(1984), 537-545.

Remark: For the (p, q)-torus knot exterior, ∃γ ∈ π1(∂M)
s.t. τγ is constant on the component X0 ⊂ X (M)
containing irreducible characters.
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7. Cyclic Surgery Theorem

For α ∈ π1(∂M) ∼= H1(∂M;Z) ∼= Z2, we consider the trace
function τα ∈ C[X0]. (τα([ρ]) = tr ρ(γ) for [ρ] ∈ X0.) Define

fα := τ 2α − 4 ∈ C[X0].

If fα(ρ) = 0, then tr ρ(α) = ±2, thus ρ(α) is conjugate to

±
(
1 0
0 1

)
or ±

(
1 1
0 1

)
.

The former case gives a representation
π1(M(α))→ PSL2C. (M(α): Dehn filling along α)

If the image is “large”, π1(M(α)) could not be cyclic.

So it is important to study zeros of fα for α ∈ H1(∂M;Z).

We denote the order of zero of f ∈ C(X0) = C(X̃0) at
x ∈ X̃0 by Zx(f ). (X̃0: smooth projective model of X0)
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7. Cyclic Surgery Theorem
Theorem (CGLS, Thm 1.0.1)

Let α, β be slopes s.t. π1(M(α)), π1(M(β)) are cyclic. If
neither α nor β is strict boundary slope then ∆(α,β) ≤ 1.

The proof divided into the following 2 propositions.

Proposition [Prop 1.1.2, CGLS]

There exists a norm || · || : H1(∂M;R)→ R≥0 s.t.

For α ∈ H1(∂M,Z), ||α|| = deg fα.

The unit ball is a finite-sided polygon whose vertices
are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let α ∈ H1(∂M;Z) be a primitive, not a strict boundary
slope. If π1(M(α)) is cyclic, then for any x ∈ X̃0, we have

Zx(fα) ≤ Zx(fδ) (∀δ ∈ H1(∂M;Z), δ *= 0).
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7. Cyclic Surgery Theorem
Proposition [Prop 1.1.2, CGLS]

There exists a norm || · || : H1(∂M;R)→ R≥0 s.t.

For α ∈ H1(∂M,Z), ||α|| = deg fα.

The unit ball is a finite-sided polygon whose vertices
are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let α ∈ H1(∂M;Z) be a primitive, not a strict boundary
slope. If π1(M(α)) is cyclic, then for any x ∈ X̃0, we have

Zx(fα) ≤ Zx(fδ) (∀δ ∈ H1(∂M;Z), δ *= 0).

Since
∑

x∈X̃0
Zx(f ) = deg f , we deduce the following.

Corollary [Cor 1.1.4, CGLS]

Let α ∈ H1(∂M;Z) be a primitive, not a strict boundary
slope. If π1(M(α)) is cyclic,

||α|| ≤ ||δ|| (∀δ ∈ H1(∂M;Z), δ *= 0).
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7. Cyclic Surgery Theorem
Corollary [Cor 1.1.4, CGLS]

Let α ∈ H1(∂M;Z) be a primitive, not a strict boundary
slope. If π1(M(α)) is cyclic,

||α|| ≤ ||δ|| (∀δ ∈ H1(∂M;Z), δ *= 0).

Theorem (CGLS, Thm 1.0.1)

Let α, β be slopes s.t. π1(M(α)), π1(M(β)) are cyclic. If
neither α nor β is strict boundary slope then ∆(α,β) ≤ 1.

Corollary to Theorem

Let L := H1(∂M;Z) ∼= Z2, V := H1(∂M;R) ∼= R2.

Let m = min
0 #=δ∈L

||δ||, B the ball of radius m in V w.r.t. || · ||.

B is a finite sided balanced (B = −B) convex polygon
[Prop 1.1.2, CGLS], contains no integral point in the
interior by the definition of m.

Since IntB is mapped to V /2L injectively, AreaB ≤ 4.
27 / 41
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7. Cyclic Surgery Theorem
Corollary [Cor 1.1.4, CGLS]

Let α ∈ H1(∂M;Z) be a primitive, not a strict boundary
slope. If π1(M(α)) is cyclic,

||α|| ≤ ||δ|| (∀δ ∈ H1(∂M;Z), δ *= 0).

Theorem (CGLS, Thm 1.0.1)

Let α, β be slopes s.t. π1(M(α)), π1(M(β)) are cyclic. If
neither α nor β is strict boundary slope then ∆(α,β) ≤ 1.

Corollary to Theorem (continued)

By Cor, if γ is not a strict boundary slope and π1(M(γ)) is
cyclic, γ is on the boundary of B . Let α, β as in Thm, and
P the parallelogram spanned by 4 pts ±α, ±β

∆(α,β) =
AreaP

2
≤ AreaB

2
≤ 2.

If ∆(α,β) = 2, then P = B , which implies that α and β
are vertices of B , thus they are strict boundary slopes. !
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7. Cyclic Surgery Theorem

We have left to show

Proposition [Prop 1.1.2, CGLS]

There exists a norm || · || : H1(∂M;R)→ R≥0 s.t.

For α ∈ H1(∂M,Z), ||α|| = deg fα.

The unit ball is a finite-sided polygon whose vertices
are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let α ∈ H1(∂M;Z) be a primitive, not a strict boundary
slope. If π1(M(α)) is cyclic, then for any x ∈ X̃0, we have

Zx(fα) ≤ Zx(fδ) (∀δ ∈ H1(∂M;Z), δ *= 0).

The norm is called the Culler-Shalen norm.
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7. Cyclic Surgery Theorem
We denote the order of pole of f ∈ C(X0) = C(X̃0) at
x ∈ X̃0 by Πx(f ). We have

deg f =
∑

x∈X̃0

Zx(f ) =
∑

x∈X̃0

Πx(f ).

Furthermore, if f is a regular function on X0 (f ∈ C[X0]),

deg f =
∑

x∈X̃0

Πx(f ) =
∑

x : ideal

Πx(f ).

Lemma [Lem 1.4.1, CGLS]

For each ideal point x ∈ X̃0, there exists a homomorphism
φx : L→ Z s.t.

Πx(fα) = |φx(α)|.

We use

Theorem [Thm 1.2.3, CGLS], [Lem II.4.4, MS1]

A valuation v on C(X0)∗ is extended to a valuation w on
C(R0)∗ s.t. w |C(X0)∗ = d · v for some d ∈ N.
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7. Cyclic Surgery Theorem
For each ideal point x ∈ X̃0, there exists a homomorphism
φx : L→ Z s.t.

Πx(fα) = |φx(α)|.

Proof. Fix a basis α1,α2 ∈ L. If ρ(αi ) ∼
(
λi ∗
0 λ−1

i

)
,

fαi = (λi + λ−1
i )2 − 4 = (λi − λ−1

i )2.

In general, for f *= 0,±1, we have

−min(0, v(f − f −1)) = |v(f )|.
( E.g. if v(f ) > 0, v(f−1) = −v(f ) < 0,

thus v(f − f−1) = −v(f ) = −|v(f )|.

)

Thus, for α = αp
1α

q
2 ∈ L,

Πx(fαp
1α

q
2
) = Πx(λ

p
1λ

q
2 − λ−p

1 λ−q
2 )2

= −min(0, v((λp
1λ

q
2 − λ−p

1 λ−q
2 )2))

= − 2

d
min(0,w(λp

1λ
q
2 − λ−p

1 λ−q
2 ))

=
2

d
|w(λp

1λ
q
2)| =

2

d
|p w(λ1) + q w(λ2)|.

So set φx(α) =
2
d |p w(λ1) + q w(λ2)|. !
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7. Cyclic Surgery Theorem
Lemma [Lem 1.4.1, CGLS]

For each ideal point x ∈ X̃0, there exists a homomorphism
φx : L→ Z s.t.

Πx(fα) = |φx(α)|.

Proposition [Prop 1.1.2, CGLS]

There exists a norm || · || : H1(∂M;R)→ R≥0 s.t.

For α ∈ H1(∂M,Z), ||α|| = deg fα.

The unit ball is a finite-sided polygon whose vertices
are rational multiple of strict boundary slopes.

Sketch. Define

||α|| =
∑

x : ideal

|φx(α)| (α ∈ V ).

It is easy to see || · || is a semi-norm. Since fα is non-const.
for 0 *= α ∈ L, this is a norm. The first assertion follows
from Lem. Since a vertex of the unit ball is on the line
φx = 0 for some x , thus the 2nd assertion follows. !
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7. Cyclic Surgery Theorem

We have left to show

Proposition [Prop 1.1.3, CGLS]

Let α ∈ H1(∂M;Z) be a primitive, not a strict boundary
slope. If π1(M(α)) is cyclic, then for any x ∈ X̃0, we have

Zx(fα) ≤ Zx(fδ) (∀δ ∈ H1(∂M;Z), δ *= 0).

This is further divided into two cases:

x is non-ideal [§1.5, p.254∼260, CGLS], and
x is ideal [§1.6, p.260∼264, CGLS].

(By the way, §1.1∼1.4 (p.242∼254).)

We show

0 *= ∃δ ∈ L, Zx(fα) > Zx(fδ) =⇒ π1(M(α)) is not cyclic.
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7. Cyclic Surgery Theorem

0 *= ∃δ ∈ L, Zx(fα) > Zx(fδ) =⇒ π1(M(α)) is not cyclic.

If x is non-ideal, find ρ ∈ R0 s.t.
(i) t(ρ) = x ,
(ii) ρ(π1(M)) is non-cyclic in PSL2C,

(iii) ρ(α) = ±
(
1 0
0 1

)
.

(Recall t : R(M)→ X (M).) So π1(M(α)) is non-cyclic.

If x is ideal, let S be the associated essential surface.
Since Zx(fα) > 0, τα is finite at x . Thus α is boundary
slope of S , or S is closed.
But we assume that α is not a strict boundary slope, S is
closed.
We show that S is incompressible in M(α). (Technical
part of §1.6.) In particular, π1(M(α)) (⊃ π1(S)) is
non-cyclic.
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7. Cyclic Surgery Theorem

Technical points in §1.5 of CGLS

We have to take the normalizations X ν
0 , R

ν
0 of X0, R0

(taking integral closure of the coordinate rings) to avoid
singularities.

Rν
0

tν !!

ν "" R0

t!!
X ν
0

ν "" X0

We ignore these technical details.

Proposition [Prop 1.5.2, CGLS]

For x ∈ X ν
0 (non-ideal point), assume that 0 *= ∃δ ∈ L s.t.

Zx(fα) > Zx(fδ). Then ∃ρ ∈ R0 s.t.

(i) t(ρ) = ν(x),

(ii) ρ(π1(M)) is non-cyclic in PSL2C,

(iii) ρ(α) = ±
(
1 0
0 1

)
.
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7. Cyclic Surgery Theorem

Proposition [Prop 1.5.2, CGLS]

For x ∈ X ν
0 (non-ideal point), assume that 0 *= ∃δ ∈ L

s.t. Zx(fα) > Zx(fδ). Then ∃ρ ∈ R0 s.t.

(i) t(ρ) = ν(x),

(ii) ρ(π1(M)) is non-cyclic in PSL2C,

(iii) ρ(α) = ±
(
1 0
0 1

)
.

Rν
0

tν ! !

ν "" R0

t!!
X ν
0

ν "" X0

It is shown that

(i) tν is surjective [Prop 1.5.6, CGLS].

(ii) ∃ dense U ⊂ (tν)−1(x) s.t. ρ ∈ ν(U) has non-cyclic
image [Prop 1.5.5, CGLS].

(iii) For ρ̃ ∈ (tν)−1(x), ν(ρ̃)(α) = ±1 [Prop 1.5.4, CGLS].

(i) is technical. We give sketches of (ii) and (iii).
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7. Cyclic Surgery Theorem

(ii) Since dimX ν
0 = 1, dimRν

0 = dimX ν
0 + 3 = 4. Thus

each component of (tν)−1(x) has dimension at least 3.

On the other hand, let

Z = {ρ ∈ t−1(ν(x)) | ρ(π1(M)) is cyclic in PSL2C} ⊂ R0,

and N = {ker ρ | ρ ∈ Z}. Since the set of finite index
subgroups of π1(M) is countable, N is countable. For each
N ∈ N , let YN := {ρ ∈ t−1(x) | ρ(N) = {1}}. We have
Z ⊂

⋃
N∈N YN , and dimYN ≤ 2 since ρ ∈ YN is (almost)

determined by the image of the cyclic generator.

Set U = (tν)−1(x)
dim≥3

− ν−1(
⋃

N∈N YN)
dim≤2

.

(iii) Since Zx(fα) > Zx(fδ) ≥ 0, 0 = fα(x) = tr ρ(α)2 − 4,

so tr ρ(α) = ±2. Thus ρ(α) ∼ ±
(
1 0
0 1

)
or ±

(
1 1
0 1

)
.

Using the assumption, we can show that the former holds.
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7. Cyclic Surgery Theorem

Proposition [Prop 1.5.4, CGLS]

Let 0 *= α, δ ∈ H1(∂M;Z) and x ∈ X ν
0 .

Assume Zx(fα) > Zx(fδ) ≥ 0 (thus tr ρ(α) = ±2).

ρ̃ ∈ (tν)−1(x) =⇒ ν(ρ̃)(α) = ±
(
1 0
0 1

)
.

We use the following lemma.

Lemma [Lem 1.5.7, CGLS]

K : a filed, v : K∗ → Z : a discrete valuation
O = {f ∈ K | v(f ) ≥ 0} : the DVR.
M = {f ∈ K | v(f ) > 0} : its maximal ideal
For A,B ∈ SL2(O) s.t. [A,B] = 0,

v((trA)2−4) > v((trB)2−4) =⇒ A ≡ ±
(
1 0
0 1

)
mod M.
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7. Cyclic Surgery Theorem
Lemma [Lem 1.5.7, CGLS]

For A,B ∈ SL2(O) s.t. [A,B] = 0,

v((trA)2−4) > v((trB)2−4) =⇒ A ≡ ±
(
1 0
0 1

)
mod M.

Sketch.

(After taking a quadratic field extension) A and B are
simultaneously upper triangulable:

A =

(
a x
0 a−1

)
, B =

(
b y
0 b−1

)
(x , y , a±1, b±1 ∈ O).

Since (trA)2 − 4 = (a+ a−1)2 − 4 = (a− a−1)2,
v((trA)2 − 4) = 2 · v(a− a−1).
Thus v((trA)2 − 4) > v((trB)2 − 4) implies
v(a− a−1) > v(b − b−1). Thus v(a− a−1) > 0, which
implies a ≡ ±1 mod M.

Since A and B commute, (b − b−1)x = (a− a−1)y , thus

v(x) ≥ v(x)− v(y) = v(a− a−1)− v(b − b−1) > 0.

u(x) > 0 means x ∈M, i.e. x ≡ 0 mod M. !
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7. Cyclic Surgery Theorem
Proposition [Prop 1.5.4, CGLS]

Let 0 &= α, δ ∈ H1(∂M;Z) and x ∈ X ν
0 .

Assume Zx(fα) > Zx(fδ) ≥ 0 (thus tr ρ(α) = ±2).

ρ̃ ∈ (tν)−1(x) =⇒ ν(ρ̃)(α) = ±
(
1 0
0 1

)
.

Sketch. For each component Q ⊂ (tν)−1(x) ⊂ Rν
0 , since

Q ⊂ Rν
0 is a codimension 1 subvariety, Q determines a

discrete valuation w on F = C(Rν
0 ) = C(R0). Let v be the

valuation corresponding to x = tν(Q) ∈ X ν
0 . Then ∃d ∈ N

s.t. w |C(X0)∗ = d · v . Since x ∈ X ν
0 is non-ideal, we have

Zx(fα) = v(fα) =
1

d
w((trP(α))2 − 4)

where P : π1(M)→ SL2(C(R0)) is the tautological rep.
Likewise for δ. Thus the assumption implies
w((trP(α))2 − 4) > w((trP(δ))2 − 4), thus by Lem 1.5.7,
P(α) = ±I mod Mw This means that, for ρ ∈ ν(Q),
ρ(α) = ±I . !
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