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1. Introduction - Outline -
K c S3: aknotin S3

M = S3\ N(K) : knot exterior
(more generally, cpt. ori. 3-mfd with torus boundary)

X(M) = {homom. 71 (M) — SL,C “up to conjugation”}

is an affine algebraic set over C, called the character variety.

/'\_/

C C X(M) : irreducible (affine) curve (possibly singular) C % »

~ o . _ .\

C : smooth projective curve birationally equiv. to C i %

=~ birat.
c—C

(- ) . y

A point p € C at which @ is not defined is called an ideal Q

~
point.
Culler-Shalen theory (in a word)
Y
Construct an incompressible surface in M from an ideal /\

. X
point.
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1. Introduction - incompressible surfaces -

M : a cpt. ori. 3-mfd with boundary @ S
A surface S € M is properly embedded if SN OM = 95,
and S intersects OM transversely. /\/\

We assume that S is 2-sided in M and does not have S2,
D? components. )

/i
Definition
o Adisk DC Ms.t. DNS =0D is called a compressing /
disk if DN S is an essential simple closed curve on S. 35

@ S is incompressible if each component of S has no 2 AN
compressing disk.

@ S is called essential if it is incompressible and not
boundary parallel.

Dl

NN

By the loop theorem, a 2-sided surface S C M is
incompressible if and only if 71(S) — w1(M) is injective \5
(for each component).
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1. Introduction - Application -

Today we focus on the application of Culler-Shalen theory
to the Cyclic Surgery Theorem.

Let M = S3\ N(K) be a knot exterior. We denote the
intersection number of two slopes a, 8 C OM by A(a, ).

The Dehn filling of M along a slope « is denoted by M(«).

Cyclic Surgery Theorem (Culler-Gordon-Luecke-Shalen)
Let K be a non-torus knot and M its exterior.
If m1(M(«)) and w1 (M(B)) are cyclic*, A(a, 8) < 1.

* Including the trivial group and Z. 0o
]

We identify the set of slopes on 9M with Q U {1/0}.

Since M(1/0) = S3 has a cyclic 71, m1(M(a)) is cyclic only
if v is integral. There are at most two such slopes, and if
there are two they are consecutive.

(Ex: (—2,3,7)-pretzel has two cyclic slopes 18 and 19.)

dln

Q)<

P+ 621,
1

|)//2ir—
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2. Basics on the character variety X U\’\)

SLQ(C:{(j Z) |a,b,c,d €C, ad — bc =1}

Mr={g1, - ,8n| n, - ,r): afinitely presented group )’\ - 7{1 /\/1
R(I) ={p: I — SLoC homomorphisms} VQ_J7 S enTortis
For a manifold M, we denote R(M) := R(m1(M)).

p € R(IN) is determined by

(p(g1), -+ ; p(gn)) € SLLC" C C*.
Conversely, any subset of SL,C" satisfying p(r;) = ((l) (1))
(i=1,---,k) gives a point of R(I").
Thus R(I) is an affine algebraic set (possibly reducible),
sometimes called the representation variety.
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2. Basics on the character variety
Consider the set of characters

{trp|pe R(N)}.

This has a structure of affine algebraic set as follows. @/ LR(P ) ]

Let C[R(I")] be the set of regular functions* on R(I).
(* functions R(I') — C written as polynomials of affine
coordinates of R(I).)

Forvy e,
m(p) == trp(7) S P\ (ﬂ)
is a regular function on R(I). Let T be the subring of\&éf) @ [ P\(P) ]

generated by 7, (y € I'). We will see that T is the ring of
regular functions on {trp | p € R(I')}.

Y] >

There exists a finite set {11}~ ; C I s.t. {r,,} generates T. T)L\/L =

Proposition [Prop 1.4.1, CS1]

Toey)- y
Idea. Using the trace identity tr Atr B =tr AB +trAB™!, - C)(y‘—(‘) —<
0

any 7, is written as a polynomial of finite 7,'s. (]
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2. Basics on the character variety
Proposition [Prop 1.4.1, CS1]

There exists a finite set {y;}¥, C I s.t. {7} generates T.

For such a finite set {v;}/, C T, define a map
t: R(F) — CN by v,
o) = (mu(p) 7)) € €
By the proposition above, {trp | p € R(I)} is identified
with

X(T) = t(R(T))
Proposition [Prop 1.4.4, Cor 1.4.5, CS1]
X(T) = t(R()) is a (Zariski) closed subset in CV, thus
X(I) is an affine algebraic set.

Thus the set of the characters {trp | p € R(I')} has a
structure of affine algebraic set via X(I'). X(I) is called the
character variety of T'.

t: R(IN — X(I) is a regular map.

8/38



2. Basics on the character variety u—q
@ p,p € R(IN) are conjugate if 3A € SL,C s.t.

P()=ATp(MA (Pyer) N
e Easy to see that p ~ p = t(p) = t(p’)

e p € R(I) is reducible if there exists a line in C? invariant N
under p. Otherwise, irreducible. X (

Proposition [Cor 1.2.2, Lem 1.4.2, CS1]

@ p is reducible if and only if tr(p(y)) =2 (Vv € [I,T]). jre, X(n
@ The set of reducible representations in R(I") has the form )
t=1(V) for some closed algebraic subset of X(I).

Proposition [Prop 1.5.2, CS1] el

Let p,p’ € R(T) s.t. t(p) = t(p’). If pis irreducible, then p
and p’ are conjugate.

For an irreducible component Ry C R(I") containing an
irreducible representation, Xo = t(Ry) is a closed set [Prop
1.4.4, CS1]. We have dim Ry = dim Xy + 3. J"""SL he) = }
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3. Discrete valuations and algebraic curves

K:afield, K*=K\{0}

v: K* — Zis called a discrete valuation if, for Vx,y € K*

() vixy) = v(x) + v(y),

(i) v(x+y) = min{v(x), v(y)}.

(Assume that v is surjective. Define v(0) = +00.)

Example

K = C(t): BEB%UA, p e C (also for p = oo in CP?)

f(t) € C(t) is written by using n € Z, ¢; € C, ¢g #0 as
f(t) = (t = p)"(co + ca(t = p) + - + ci(t — p)¥)

Then, v,(f) = n s a discrete valuation.

Example

K=Q, p: prime

r € Q is written as r = p"(co + c1p + - - + ckp¥)
(n€Z,0< ¢ <p—1,c#0)

Then v,(r) = nis a discrete valuation.
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3. Discrete valuations and algebraic curves
(i) vixy) = v(x) + v(y), (i) v(x +y) > min{v(x), v(y)}.

Easy facts
(1) v(£1)=0. (Thus v(—x) = v(x).)
(2) If v(x) < v(y), v(x+y)=v(x).

Proof.

(1) By v(1) = v(£1 - 1) = v(£1) + v(%1).

(2) v(x + ) = min(v(x), v(y)) = v(x).

Conversely, v(x) = v((x+y) — y) > min(v(x + y), v(y)).
If v(x +y) > v(y), then v(x) > v(y) contradicts

v(x) < v(y). Thus min(v(x + y), v(y)) = v(x + y),
therefore v(x) > v(x + y). O

O={xeK]|v(x)>0}isaPID, and a local ring (i.e.
having a unique proper maximal ideal). O is called the
discrete valuation ring (DVR).

Actually, if we take m € K s.t.v(m) = 1, any non-trivial ideal
has the form (7"), thus () is the unique maximal ideal.
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3. Discrete valuations and algebraic curves

Let X, Y be (affine, projective, or quasi-projective) variety
over C. Then the following are equivalent [Cor |.4.5, Har].

@ X and Y are isomorphic on some non-empty Zariski open
subsets.

@ The function fields C(X), C(Y) are isomorphic.

In these cases, X and Y are called birationally equivalent.

A 1-dimensional variety C (possibly singular) gives the
function field K = C(C), which is a fin. gen. field of trans.
degree 1.

Conversely, for a given fin. gen. field K/C of trans. degree
1, the set of DVRs on K satisfying v(C*) =0 has a
structure of a smooth projective curve [§1.6, Har]. When
applied to K = C(C), this gives a smooth projective curve
C birat. equiv. to C.

[Har] Hartshorne, “Algebraic Geometry”, GTM 52.

C bvve
)
C(C)
frel)

12/38



3. Discrete valuations and algebraic curves

Summary

For an algebraic curve Cgver C, we can construct a
smooth projective curve C birationally equivalent to C as
the set of DVRs of C(C)/C.

Concisely,
{ points on C } & { discrete valuations on C(C)/C } X(ﬂ)
A point on C s.t. the birational map C — C is not defined \J

is called an ideal point.

~
The valuation v associated to an ideal point of C can be C - C
characterized by 3f € C[C](C C(C)) s.t. v(f) <O0.
— e———
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4. Tree actions and incompressible surfaces —
Let T be a tree (a connected graph with no cycle).

M : a 3-mfd, M : the universal cover of M.
w1 (M) ~ T: an action without inverting edges
Consider a 1 (M)-equivariant map £ : M — T. Q\

For each mid point m, of an edge e C T, we assume that f
is transverse to m.. Then S := f~1(m,) is a surface in M.

Since f is equivariant, S gives a surface S C M. In this
case, we say that S C M is associated with my(M) ~ T.

If m1(M) acts on T without inverting edges, S is 2-sided.

An action w1 (M) ~ T is called non-trivial if it has no
global fixed point of 71 (M).

Proposition [Cor 1.3.7, CGLS], [Prop 2.3.1, CSI]

If 71(M) ~ T is non-trivial, we can deform f so that the
associated surface is essential.
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4. Tree actions and incompressible surfaces

Proposition [Cor 1.3.7, CGLS], [Prop 2.3.1, CSI]

If m1(M) ~ T is non-trivial, we can deform f so that the
associated surface is essential.

In the beginning of talk, | wrote that the CS theory

constructs an incompressible surface in M from an ideal
point.

But, actually,

the CS theory constructs a non-trivial tree action of 71 (M).

The tree action (and the translation length) is uniquely
determined by the ideal point, but the associated essential
surface is not uniquely determined.
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DTS N E

peCC X\

\J
O={xeK|v(x) >0} (discrete valuation ring) \g
L

5. Bass-Serre-Tits theory

K : afield, v:K*— Z : valuation

Let 7 € K be an element with v(7) = 1.
We will construct a tree T associated with these data.
wi u i wi ‘7‘(}}\/\ [\\) T

Let V = K2. A lattice in V is a O-submodule L C V which
spans V over K.

Two lattices L, L are equivalent if 3o € K* s.t L' = all.

Bass-Serre tree T
Define a tree T by

Vertices: equivalent classes of lattices A = [L]
Edges: A, A\ are connected by an edge if 3 lattices L, L’ s.t.

rLcl/cL, (A=[L, N =[]
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5. Bass-Serre-Tits theory

Bass-Serre tree T

Vertices: equivalent classes of lattices A = [L]
Edges: A, A\ are connected by an edge if 3 lattices L, L’ s.t.

alLcl'cL, (AN=[L,N=][L])

Let k = O/(m) (called the residue field). The above L' C L
defines a line L'/wL C L/wL = k%. Thus the link of a
vertex can be regarded as P!(k) (the projective line /k).

SL>K naturally acts on the tree T. 51—16 C {L_ ) ’< ~ T

It is easy to see that SL,O fixes the lattice ©O? C K2, thus N
fixing the vertex [0?].

Moreover, it is known that if a subgroup G C SL,K fixing a (\
vertex of the tree, then G is conjugate into SL,O by an

element of GLK. é—ISLZG 3

Further detail: [Se| Serre, “Trees”, Springer.
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6. Culler-Shalen's main construction

M : a cpt. ori. 3-mfd with torus boundary

R(M) = Hom(m1(M), SL,C) Okaf )
p € R(M) is written as

_ (a(v) b(v)
p(y) = (C(fy) d(’y)) (v € m(M)).

Thus we can regard a(v), b(7), c(7), d(v) € C[R(M)]. This
gives a tautological representation P : myM — SL,C[R(M)]

_ (a(v) b(v)
P(v) = (C(v) d(v)) € SL,C[R(M)].

For any closed subset D C R(M), the restriction of the
tautological representation gives P : myM — SL,C[D].
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6. Culler-Shalen’'s main construction
X(M) : the character variety D < ‘2 (/\/\)

Take a curve C C X(M).  \/ ¢+ F € C k[ K‘
ot L

We can take an affine curve D C t=(C) Cc R(M

restriction t|p : D — C is not constant [proof of Prop 1.4. 4C,C >< (/\,\)
CS1]. We remark that C(D)/C(C) is a finite extension.

An ideal point of C gives a valuation v on C(C), which @ ~
gives a valuation_w on the finite extension C(D). D
This gives the tree assm)(D) and the action )

m1(M) £ SL,C[D] € SL,C(D) ~ T. f —
Q' & C

(P : tautological rep.)

The Fundamental Theorem [Thm 2.2.1, CS1]

For an affine curve C C X(M) and the ideal point p, the
associated tree action is non-trivial.

Remark: A non-ideal point of C also gives a tree action,

but it has a global fixed point, is not interesting. 10,38



6. Culler-Shalen's main construction

w< ge D — Dc RM)

T b

v& pe C— CcC XM

For v € m (M), v(7y) > 0 if and only if 7 fixes a vertex of
T [Thm 2.2.1, CS1], [Prop 1.2.6, CGLS]. In this case, we V( C V) 20
can deform «y avoiding the associated surface S.

2
Thus if 3, 8 € m(OM) s.t. v(74) >0 and v(78) <0, ais /5 € A (9/‘/\)

a boundary slope. \/(_C
<
Moreover, the translation length of v € m1(M) is given by ﬁ) o
min(0, —2w(7,)) § e ,‘)

[Prop 11.3.15, MS1].

9 = _5/7
[MS1] Morgan-Shalen. “Valuations, trees, and /Q .
degenerations of hyperbolic structures. 1,” Ann. of Math.

(2) 120(1984), 401-476.
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7. Cyclic Surgery Theorem ML) -

In §1 of [CGLS], the following theorem is proved as an mt A Dlo‘(’mlhg)\

application of the CS theory. D L]

L7 e H SVI.V\)QA-
/

Theorem (CGLS, Thm 1.0.1)

Let M be a hyperbolic orientable 3-manifold with one torus ”‘l‘”‘& 9{ ‘
boundary. Let o, 8 be slopes s.t. m(M(c)), m1(M(B)) are

cyclic. If neither o nor (8 is strict boundary slope then essn ‘V.:JL Snbtacd
Ao, B) < 1.

Sem

A slope OM is called a boundary slope if it is the boundary () ) ih&om?wssl\g,
of some essential surface. A slope is called a strict boundary ( 'Y
slope if it is the slope of some non-fiber essential surface. I') pot F"""“b’ﬂk

Remark: The boundary slope detected by CS theory (more To M ,
generally, detected by a tree action) is a strict boundary

slope [CGLS, Prop 1.2.7]. oM
The remaining part of the cyclic surgery theorem is proved @3
in [§2, CGLS] by using different techniques.

?
9 dope -



7. Cyclic Surgery Theorem

Theorem (CGLS, Thm 1.0.1)

Let M be a hyperbolic orientable 3-manifold with one torus
boundary. Let o, B be slopes s.t. w1 (M(«)), 71 (M(B)) are

cyclic. If neither r nor s is strict boundary slope then

A, 8) < 1. %2
A hyperbolic structure on M gives a discrete faithful L
representation pg : 1M — PSL,C = Isom™ (H?), which is SLy €
irreducible. L
There exists a lift pg : 1M — SLoC of pg [Prop 3.1.1, L

CS1]. (Since the obstruction to the lifting is living in 5
H?(M; Z,/27), trivial for knot exteriors.) j 5L), a
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7. Cyclic Surgery Theorem

Take an irreducible component Ry C R(M) containing po
and Xp = f(Ro).

Proposition [Prop 1.1.1, CGLS]

dim Xy = 1. For any non-trivial v € m1(OM), 7 is R(}v\)
non-constant. (Recall 7,([p]) = tr p(7) for [p] € Xo.)

:HVM(T\_JM,SLL@>
dim Xp > 1 is rather elementary [Prop 3.2.1, CS1], which is
the same line of argument as Theorem 5.6 of Thurston's
Lecture Notes. ﬂ: € Pg C PU\’\)
dim Xy < 1 is shown in [Prop 2, CS2] using some local J/ *||2 \ f

rigidity result. The second assertion also follows from [Prop
2, CS2). XO X (M)

[CS2] Culler-Shalen, “Bounded, separating, incompressible I
surfaces in knot manifolds,” Invent., 75(1984), 537-545. *(R )
0

Remark: For the (p, g)-torus knot exterior, 3y € 71 (OM)
s.t. 7, is constant on the component Xy C X(M)

containing irreducible characters.
23 /41



7. Cyclic Surgery Theorem

For a € m1(OM) = Hy(OM; Z) = Z?, we consider the trace
function 7, € C[Xo]. (7a([p]) = r,o(’y) for [p] € Xo.) Define

fo = 715 —4 € (:[)(b].
If fo(p) =0, then tr p(a

= 42, thus p(«) is conjugate to
Qi

11
or + 0 1)
T-PA) =+ 2
The former case gives a representation

71(M(@)) — PSLsC. (M(a): Dehn filling along a) { > TC; M — Pse, ¢

If the image is “large”, m1(M(a)) could noW
c

So it is important to study zeros of f, for « € Hy(OM; Z).

We denote the order of zero of f € C(Xp) = C(Xo) at
x € Xo by Z(f). (Xo: smooth projective model of Xp)
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7. Cyclic Surgery Theorem
Theorem (CGLS, Thm 1.0.1)
Let «, 8 be slopes s.t. i (M(a)), m1(M(B)) are cyclic. If

neither o nor f3 is strict boundary slope then A(a, 8) < 1. ><O Q o
The proof divided into the following 2 propositions.

L
Proposition [Prop 1.1.2, CGLS] o R ‘F'§

There exists a norm || - || : H(OM;R) — R>g s.t.
T @l5 15 >
@ For a € Hi(OM,Z), |||| = deg f,.

@ The unit ball is a finite-sided polygon whose vertices
are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let o € H1(OM; Z) be a primitive, not a strict _boundary
slope. If m1(M(a)) is cyclic, then for any x € Xo, we have

Z(£) < Zu(f5) (V6 € Hi(OM;Z), § # 0).

25 /41



7. Cyclic Surgery Theorem
Proposition [Prop 1.1.2, CGLS]

There exists a norm || - || : H1(OM;R) — R>g s.t.
e For a € Hi(OM,Z), ||a|| = deg f,.

@ The unit ball is a finite-sided polygon whose vertices
are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let « € H1(OM;Z) be a primitive, not a strict boundary
slope. If m1(M(a)) is cyclic, then for any x € Xy, we have

Z(fo) < Z(f5) (V6 € Hi(OM;Z), § #0).
Since ), cx, Zx(f) = deg f, we deduce the following.

Corollary [Cor 1.1.4, CGLS]

Let o € H;(OM; Z) be a primitive, not a strict boundary
slope. If m1(M(«)) is cyclic,

llal[ <lé]] (V6 € Hi(OM; Z), & # 0).



7. Cyclic Surgery Theorem V=R
Corollary [Cor 1.1.4, CGLS]

Let o € H1(OM; Z) be a primitive, not a strict boundary ’ 0 i

slope. If m1(M(«)) is cyclic, B
llod| < 18] (¥ € Hi(OM;Z), 6 # 0). :

Theorem (CGLS, Thm 1.0.1) —

Let «, 8 be slopes s.t. i (M()), m1(M(5)) are cyclic. If |

neither a nor 3 is strict boundary slope then A(«a, 8) < 1. I"\

g
Corollary to Theorem {/W\ \
]70(-11

Let L := H(OM; Z) = 72,V = Hi(OM; R) R2. - 22

Let m = min ||d]|, B the ball of radius min V w.r.t. ||-||.
0#£5el

B is a finite sided balanced (B = —B) convex polygon
[Prop 1.1.2, CGLS], contains no integral point in the
interior by the definition of m.

Since Int B is mapped to V/ /2L injectively, Area B < 4.
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7. Cyclic Surgery Theorem o ® -
n
Corollary [Cor 1.1.4, CGLS] B

Let o € H1(OM; Z) be a primitive, not a strict boundary °
slope. If m1(M(a)) is cyclic,

llafl < 6]l (V6 € Hi(OM;Z), 6 # 0).

Theorem (CGLS, Thm 1.0.1)

Let «, 8 be slopes s.t. w1 (M(e)), m1(M(5)) are cyclic. If
neither aw nor 3 is strict boundary slope then A(«a, 8) < 1. [5

Corollary to Theorem (continued) A

By Cor, if v is not a strict boundary slope and 71 (M(%)) is
cyclic, v is on the boundary of B. Let «, 5 as in Thm, and
P the parallelogram spanned by 4 pts +«, +3 A

Ao, B) = ArezaP < Areza B <
If A(a, B) =2, then P = B, which implies that o and P
are vertices of B, thus they are strict boundary slopes. [

2.
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7. Cyclic Surgery Theorem

We have left to show

Proposition [Prop 1.1.2, CGLS]

There exists a norm || - || : H1(OM;R) — R>g s.t.
o For a € Hi(OM,Z), |||| = deg 7.

@ The unit ball is a finite-sided polygon whose vertices
are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let « € H1(OM;Z) be a primitive, not a strict boundary
slope. If m1(M(«)) is cyclic, then for any x € Xp, we have

Z(fa) < Z(f5) (V6 € Hi(OM;Z), 6 # 0).

The norm is called the Culler-Shalen norm.
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7. Cyclic Surgery Theorem Vi

We denote the order of pole of f € C(Xp) = C(Xo) at ><O

x € Xo by M.(f). We have
degf =Y Z(f)= > N
XEXO XE)~<0
Furthermore, if f is a regular function on Xy (f € C[Xo]),
degf =Y M(f)= > MN.(f).
xEXo x: ideal
Lemma [Lem 1.4.1, CGLS]

For each ideal point x € Xo, there exists a homomorphism
Ox L — 7Z st

1] —
H, (bN\ \2) N Mi(fa) = |ox(@)]-
We use S 2%

Theorem [Thm 1.2.3, CGLS], [Lem I1.4.4, MSI]

A valuation v on C(Xp)* is extended to a valuation w on
C(Ro)* s.t. wlg(x)- = d - v for some d € N.
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7. Cvclic Surgerv Theorem

For each ideal point x € Xo, there exists a homomorphism
Ox: L —7Zs.t.

MNx(fa) = |px(a)]-
Proof.  Fix a basis ay, az € L. If p(a;) ~ (’(\)" A*l)’ _
(v PR — 4 i I+
faor =N+ AT —4=(\ = A2 VIF) > o
In general, for f # 0,+1, we have /
—min(0, v(f — ffl)) = |v(f)|. (

Thus, for a = ofad € L,

Eg if v(f) > 0, v(f~1) = —v(f) < 0, \/(-f——l) < O

thus v(f — F1) = —v(f) = —|v(f)]. ) "'L\h)

_( -
Ma(Fupag) = Ma(AZAS — ATPA; )2 vif- ) = —vif)
=~ min(0, V(A — A *; 7)) =—|vin|
= 75 min(0, W()\’IJAZ _ /\;P)\Q*Q))
2 2
= H|W(/\Ilj)‘g)| = g|P w(A1) + gw(A2)).

So set x(a) = 2[pw(h) + qw(ho)]. 0
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7. Cyclic Surgery Theorem
Lemma [Lem 1.4.1, CGLS]

For each ideal point x € )~<0, there exists a homomorphism
Ox: L —7Zs.t.

Mx(fa) = [6x()]-
Proposition [Prop 1.1.2, CGLS]
There exists a norm || - || : H1(OM;R) — R s.t.
e For a € Hi(OM,Z), ||a|| = deg f,.

@ The unit ball is a finite-sided polygon whose vertices
are rational multiple of strict boundary slopes.

Sketch. Dpfine

lall= > léx(@)] [ae V).
—ideal

It is easy to see || - || is a semi-norm. Since f, is non-const.
for 0 # « € L, this is a norm. The first assertion follows
from Lem. Since a vertex of the unit ball is on the line

¢x = 0 for some x, thus the 2nd assertion follows. O

ey
oLy) e R®

P 1y | =llegy)

3 L
(Lo A ,1)

~
N
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7. Cyclic Surgery Theorem

We have left to show

Proposition [Prop 1.1.3, CGLS]

Let o € H1(OM; Z) be a primitive, not a strict boundary
slope. If m1(M()) is cyclic, then for any x € Xp, we have

Z(fy) < Z(fs) (V6 € Hi(OM;Z), § #0).
This is further divided into two cases:

g
@ x is non-ideal [§1.5, p.254~260, CGLS], and OI/ch"\‘\w‘/ }H’”
@ x is ideal [§1.6, p.260~264, CGLS].

]
(By the way, §1.1~1.4 (p.242~254).) i [c6 LS}
We show

0+# 360 €L, Z(fn) > Z(fs) = m1(M(c)) is not cyclic.
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7. Cyclic Surgery Theorem

0+# 360 €L, Z(fy) > Z(fs) = m1(M(c)) is not cyclic.

o If x is non-ideal, find p € Ry s.t.

(i) t(p) = x,
(ii) p(m1(M)) is non-cyclic in PSL>C,

(iil) pla) = + ((1) g)
(Recall t: R(M) — X(M).) So m1(M(«)) is non-cyclic.

o If x is ideal, let S be the associated essential surface.

Since Z,(f,) > 0, 7 is finite at x. Thus « is boundary

slope of S, or S is closed. }\/\ P, 5

But we assume that « is not a strict boundary slope, S is (,( J
oy

closed.

We show that S is incompressible in M(«). (Technical
part of §1.6.) In particular, m1(M(a)) (D m1(S)) is

non-cyclic. )\/\ ("() > S
e\
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7. Cyclic Surgery Theorem

Technical points in §1.5 of CGLS

We have to take the normalizations X}, R§ of Xo, Ro
(taking integral closure of the coordinate rings) to avoid
singularities.

RY > Ry

t”¢/ ¢/t

XY = Xo

We ignore these technical details.

Proposition [Prop 1.5.2, CGLS] l/] | LDN\ : 2—) ;21

]
For x € X} (non-ideal point), assume that 0 # 30 € L s.t.
Z(fy) > Z(f5). Then 3p € Ry s.t.

(i) t(p) = v(x),
(ii) p(w1(M)) is non-cyclic in PSL,C,
) o

(i) ple) = (5 7):

C

R.>f
lfr

2 Xo S Kodtip)

”
49y
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7. Cyclic Surgery Theorem

Proposition [Prop 1.5.2, CGLS]

For x € X¥ (non-ideal point), assume that 0 # 30 € L
s.t. Zu(fy) > Z(fs5). Then 3p € Ry s.t. U(V)—\ () C Ry >Ry 2f

() tlp) = v(x) o g

(it) p(w1(M)) is non-cyclic in PSL,C, Xg —=Xo 3 f1p)
V] ]

(iii) pla) ==+ <é 2) L Vo)

It is shown that

(i) t¥ is surjective [Prop 1.5.6, CGLS].

(i) 3 dense U C (t¥)71(x) s.t. p € v(U) has non-cyclic
image [Prop 1.5.5, CGLS].

(iii) For p € (tV)~}(x), v(p)(a) = £1 [Prop 1.5.4, CGLS].

(i) is technical. We give sketches of (ii) and (iii).
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7. Cyclic Surgery Theorem - Al o0y
(i) Since dim XY =1, dim R = dim X¥ +3 = 4. Thus P\D Yo Al
each component of (t“)~!(x) has dimension at least 3.

On the other hand, let )/ 7\-

Z = {petv(x) | p(r1(M)) is cyclic in PSL,C} C Ry, 3 & x S - dia
and V' = {kerp | p € Z}. Since the set of finite index

subgroups of w1 (M) is countable, N is countable. For each

NeN, let Yy:={pectl(x)|p(N)={1}}. We have

Z CUpen YN, and dim Yy < 2 since p € Yy is (almost)

determined by the image of the cyclic generator.

Set U= (t")"}(x) — V_l(UNeN Yn).
dim>3 T dim<2
(ii) Since Z(f,) > Z«(f5) >0, 0 = f,(x) = trp(a)? — 4,
10 11
so tr p(a) = £2. Thus p(a) ~ £ (0 1) or £ <O 1>.
Using the assumption, we can show that the former holds.
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7. Cyclic Surgery Theorem

Proposition [Prop 1.5.4, CGLS]

Let 0 # «, 6 € Hi(OM;Z) and x € X}
Assume Z,(f,) > Z(f5) > 0 (thus tr p(a) = £2).

pe )i — v == (g 3)-

We use the following lemma.

Lemma [Lem 1.5.7, CGLS]

K : afiled, v:K*— Z: a discrete valuation
O ={f e K|v(f) >0} : the DVR.

M ={f € K| v(f) >0} : its maximal ideal
For A, B € SL,(O) s.t. [A, B] =0,

V((tr A2—4) > v((tr B —4) —> A=+ (1 0

0 1) mod M.
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7. Cvclic Surgervy Theorem

Lemma [Lem 1.5.7, CGLS]
For A, B € SL,(O) s.t. [A,B] =0,
V((tr A2—4) > v((tr BY—4) —> A=+ <(1) 0

Sketch.

(After taking a quadratic field extension) A and B are
simultaneously upper triangulable:

a x b
A = (0 81) ’ B - (O by1> (X7y7 ailabil EQ_).

Since (trA? —4=(a+a 1) —4=(a—at)?
v((trA)?2 —4)=2-v(a—at).

Thus v((tr A)? — 4) > v((tr B)> — 4) implies
v(a—a')>v(b—b"") Thus v(a—a-t
implies a = +1 mod M.M0

0, which

Since A and B commute, (b— b~ 1)x = (a — a~ 1)y, thus
vix) > v(x) —v(y)=v(a—at)—v(b—b"1)>0.
u(x) >0 means x € M, i.e. x=0 mod M. O

) mod M.
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7. Cyclic Surgery Theorem
Proposition [Prop 1.5.4, CGLS]

Let 0 # 0,6 € H1(OM;Z) and x € X}
Assume Z,(f,) > Zi(fs) > 0 (thus trp(a) = £2). W é> (G C{’ ) <R
o

o (10

pe ()0 = vip) == (5 1) | I
Sketch.  For each component @ C (t*)~1(x) C RY, since
@ C R{§ is a codimension 1 subvariety, Q@ determines a -k (9> - Xo
discrete valuation w on F = C(R}) = C(Ry). Let v bethe u
valuation corresponding to x = t”(Q) € X§. Then 3d e N )
s.t. Wlg(x)- = d - v. Since x € X{ is non-ideal, we have

2,406) < 2(5) = v(f) = Sw((tr (@)~ )

where P : m1(M) — SL2(C(Ry)) is the tautological rep.
Likewise for . Thus the assumption implies

w((tr P(a))? — 4) > w((tr P(6))? — 4), thus by Lem 1.5.7,
P(a) = £/ mod M,, This means that, for p € v(Q),

pla) = £1. O

J
%
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