Culler－Shalen 理論の概説

加が
蒲谷祐一

北見工業大学

微分トポロジー＇22－デーン手術－ オンライン 2022 年 3 月 20 日

1. Introduction - Outline -
$K \subset S^{3}:$ a knot in S^{3}
$M=S^{3} \backslash N(K)$: knot exterior (more generally, cpl. pori. 3-mfd with torus boundary)
$X(M)=\left\{\right.$ homom. $\pi_{1}(M) \rightarrow \mathrm{SL}_{2} \mathbb{C}$ "up to conjugation" $\}$

is an affine algebraic set over \mathbb{C}, called the character variety.
$C \subset X(M)$: irreducible (affine) curve (possibly singular)

\widetilde{C} : smooth projective curve birationally equiv. to C $(\varphi: \widetilde{C} \xrightarrow{\text { brat. }} C)$

A point $p \in \widetilde{C}$ at which φ is not defined is called an ideal point.

Culler-Shalen theory (in a word)
Construct an incompressible surface in M from an ideal point.

1. Introduction - incompressible surfaces -
M : a cpl. pori. 3-mfd with boundary
A surface $S \subset M$ is properly embedded if $S \cap \partial M=\partial S$, and S intersects ∂M transversely.

We assume that S is 2 -sided in M and does not have S^{2}, D^{2} components.

Definition

- A disk $D \subset M$ st. $D \cap S=\partial D$ is called a compressing disk if $D \cap S$ is an essential simple closed curve on S.
- S is incompressible if each component of S has no compressing disk.
- S is called essential if it is incompressible and not boundary parallel.

By the loop theorem, a 2-sided surface $S \subset M$ is incompressible if and only if $\pi_{1}(S) \rightarrow \pi_{1}(M)$ is injective (for each component).

1. Introduction - Application -

Today we focus on the application of Culler-Shalen theory to the Cyclic Surgery Theorem.

Let $M=S^{3} \backslash N(K)$ be a knot exterior. We denote the intersection number of two slopes $\alpha, \beta \subset \partial M$ by $\Delta(\alpha, \beta)$.

The Dehn filling of M along a slope α is denoted by $M(\alpha)$.

Cyclic Surgery Theorem (Culler-Gordon-Luecke-Shalen)

Let K be a non-torus knot and M its exterior. If $\pi_{1}(M(\alpha))$ and $\pi_{1}(M(\beta))$ are cyclic*, $\Delta(\alpha, \beta) \leq 1$.

* Including the trivial group and \mathbb{Z}.

We identify the set of slopes on ∂M with $\mathbb{Q} \cup\{1 / 0\}$.
Since $M(1 / 0) \cong S^{3}$ has a cyclic $\pi_{1}, \pi_{1}(M(\alpha))$ is cyclic only if α is integral. There are at most two such slopes, and if

$$
\begin{gathered}
p m+q l \\
I
\end{gathered}
$$ there are two they are consecutive.

(Ex: (-2,3,7)-pretzel has two cyclic slopes 18 and 19.)

Plan

1. Intro
2. Basics on the character variety $X(M)$ [§1, CS1]
3. Discrete valuations and algebraic curves
4. Tree actions and incompressible surfaces [§2, CS1]

20 pages
5. Bass-Serre-Tits theory [§2, CS1]
6. Culler-Shalen's main construction [CS1]
7. Cyclic Surgery Theorem [CGLS]

References

$$
18 \text { pages }
$$

[CS1] Culler-Shalen, "Varieties of group representations and splittings of 3-manifolds," Ann. of Math., 117(1983), 109-146.
[CGLS] Culler-Gordon-Luecke-Shalen, "Dehn surgery on knots," Ann. of Math., 125(1987), 237-300.

2. Basics on the character variety

$\mathrm{SL}_{2} \mathbb{C}=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{C}, a d-b c=1\right\}$
$\Gamma=\left\langle g_{1}, \cdots, g_{n} \mid r_{1}, \cdots, r_{k}\right\rangle:$ a finitely presented group $\quad \cap=\pi, M$ $R(\Gamma)=\left\{\rho: \Gamma \rightarrow \mathrm{SL}_{2} \mathbb{C}\right.$ homomorphisms $\}$ representation
For a manifold M, we denote $R(M):=R\left(\pi_{1}(M)\right)$.
$\rho \in R(\Gamma)$ is determined by

$$
\left(\rho\left(g_{1}\right), \cdots, \rho\left(g_{n}\right)\right) \in S L_{2} \mathbb{C}^{n} \subset \mathbb{C}^{4 n}
$$

Conversely, any subset of $\mathrm{SL}_{2} \mathbb{C}^{n}$ satisfying $\rho\left(r_{i}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$(i=1, \cdots, k)$ gives a point of $R(\Gamma)$.
Thus $R(\Gamma)$ is an affine algebraic set (possibly reducible), sometimes called the representation variety.
2. Basics on the character variety

Consider the set of characters

$$
\{\operatorname{tr} \rho \mid \rho \in R(\Gamma)\}
$$

This has a structure of affine algebraic set as follows.
Let $\mathbb{C}[R(\Gamma)]$ be the set of regular functions* on $R(\Gamma)$.

$$
\mathbb{C}[R(\Gamma)]
$$

(* functions $R(\Gamma) \rightarrow \mathbb{C}$ written as polynomials of affine coordinates of $R(\Gamma)$.)

For $\gamma \in \Gamma$,

$$
\tau_{\gamma}(\rho):=\operatorname{tr} \rho(\gamma) \quad \rho \in R(\cap)
$$

is a regular function on $R(\Gamma)$. Let T be the subring of generated by $\tau_{\gamma}(\gamma \in \Gamma)$. We will see that T is the ring of

$$
\mathbb{C}[R(r)]
$$ regular functions on $\{\operatorname{tr} \rho \mid \rho \in R(\Gamma)\}$.

Proposition [Prop 1.4.1, CS1]

$$
\langle x, y \mid \cdots\rangle
$$

There exists a finite set $\left\{\gamma_{1}\right\}_{i=1}^{N} \subset \Gamma$ s.t. $\left\{\tau_{\gamma_{i}}\right\}$ generates T.
Idea. Using the trace identity $\operatorname{tr} A \operatorname{tr} B=\operatorname{tr} A B+\operatorname{tr} A B^{-1}$, any τ_{g} is written as a polynomial of finite $\tau_{\gamma_{i}}$'s.

$$
\begin{aligned}
& \tau_{x y^{2}}=\tau_{(x y) \cdot y} \\
& =\tau_{x y} \cdot \tau_{y}-\tau_{x}
\end{aligned}
$$

2. Basics on the character varietv

Proposition [Prop 1.4.1, CS1]

There exists a finite set $\left\{\gamma_{i}\right\}_{i=1}^{N} \subset \Gamma$ s.t. $\left\{\tau_{\gamma_{i}}\right\}$ generates T.
For such a finite set $\left\{\gamma_{i}\right\}_{i=1}^{N} \subset \Gamma$, define a map $t: R(\Gamma) \rightarrow \mathbb{C}^{N}$ by

$$
t(\rho)=\left(\tau_{\gamma_{1}}(\rho), \cdots, \tau_{\gamma_{N}}(\rho)\right) \cdot \in \mathbb{C}^{\prime}
$$

By the proposition above, $\{\operatorname{tr} \rho \mid \rho \in R(\Gamma)\}$ is identified with

$$
X(\Gamma):=t(R(\Gamma))
$$

Proposition [Prop 1.4.4, Cor 1.4.5, CS1]
$X(\Gamma)=t(R(\Gamma))$ is a (Zariski) closed subset in \mathbb{C}^{N}, thus $X(\Gamma)$ is an affine algebraic set.

Thus the set of the characters $\{\operatorname{tr} \rho \mid \rho \in R(\Gamma)\}$ has a structure of affine algebraic set via $X(\Gamma) . X(\Gamma)$ is called the character variety of Γ.
$t: R(\Gamma) \rightarrow X(\Gamma)$ is a regular map.
2. Basics on the character variety

- $\rho, \rho^{\prime} \in R(\Gamma)$ are conjugate if $\exists A \in \mathrm{SL}_{2} \mathbb{C}$ s.t.

$$
\rho^{\prime}(\gamma)=A^{-1} \rho(\gamma) A \quad(\forall \gamma \in \Gamma)
$$

- Easy to see that $\rho \sim \rho^{\prime} \Longrightarrow t(\rho)=t\left(\rho^{\prime}\right)$
- $\rho \in R(\Gamma)$ is reducible if there exists a line in \mathbb{C}^{2} invariant
$\rho \in R(\Gamma)$ is reducible if there ex
under ρ. Otherwise, irreducible.

Proposition [Cor 1.2.2, Lem 1.4.2, CS1]

- ρ is reducible if and only if $\operatorname{tr}(\rho(\gamma))=2 \quad(\forall \gamma \in[\Gamma, \Gamma])$.
- The set of reducible representations in $R(\Gamma)$ has the form $t^{-1}(V)$ for some closed algebraic subset of $X(\Gamma)$.

Proposition [Prop 1.5.2, CS1]

Let $\rho, \rho^{\prime} \in R(\Gamma)$ s.t. $t(\rho)=t\left(\rho^{\prime}\right)$. If ρ is irreducible, then ρ and ρ^{\prime} are conjugate.

For an irreducible component $R_{0} \subset R(\Gamma)$ containing an irreducible representation, $X_{0}=t\left(R_{0}\right)$ is a closed set [Prop 1.4.4, CS1]. We have $\operatorname{dim} R_{0}=\operatorname{dim} X_{0}+3 . \operatorname{dinSL}(2, \mathbb{C})=3$

3．Discrete valuations and algebraic curves

$K: ~ a ~ f i e l d, \quad K^{*}=K \backslash\{0\}$
$v: K^{*} \rightarrow \mathbb{Z}$ is called a discrete valuation if，for $\forall x, y \in K^{*}$
（i）$v(x y)=v(x)+v(y)$ ，
（ii）$v(x+y) \geq \min \{v(x), v(y)\}$ ．
（Assume that v is surjective．Define $v(0)=+\infty$ ．）

Example

$K=\mathbb{C}(t)$ ：有理関数体，$\quad p \in \mathbb{C}$（also for $p=\infty$ in $\mathbb{C} P^{1}$ ） $f(t) \in \mathbb{C}(t)$ is written by using $n \in \mathbb{Z}, c_{i} \in \mathbb{C}, c_{0} \neq 0$ as

$$
f(t)=(t-p)^{n}\left(c_{0}+c_{1}(t-p)+\cdots+c_{k}(t-p)^{k}\right)
$$

Then，$v_{p}(f)=n$ is a discrete valuation．

Example

$K=\mathbb{Q}, \quad p$ ：prime
$r \in \mathbb{Q}$ is written as $r=p^{n}\left(c_{0}+c_{1} p+\cdots+c_{k} p^{k}\right)$
$\left(n \in \mathbb{Z}, 0 \leq c_{i} \leq p-1, c_{0} \neq 0\right)$
Then $v_{p}(r)=n$ is a discrete valuation．

3. Discrete valuations and algebraic curves

(i) $v(x y)=v(x)+v(y)$,
(ii) $v(x+y) \geq \min \{v(x), v(y)\}$.

Easy facts

(1) $v(\pm 1)=0$. (Thus $v(-x)=v(x)$.)
(2) If $v(x)<v(y), \quad v(x+y)=v(x)$.

Proof.

(1) By $v(1)=v(\pm 1 \cdot \pm 1)=v(\pm 1)+v(\pm 1)$.
(2) $v(x+y) \geq \min (v(x), v(y))=v(x)$.

Conversely, $v(x)=v((x+y)-y) \geq \min (v(x+y), v(y))$. If $v(x+y)>v(y)$, then $v(x) \geq v(y)$ contradicts $v(x)<v(y)$. Thus $\min (v(x+y), v(y))=v(x+y)$, therefore $v(x) \geq v(x+y)$.
$\mathcal{O}=\{x \in K \mid v(x) \geq 0\}$ is a PID, and a local ring (i.e. having a unique proper maximal ideal). \mathcal{O} is called the discrete valuation ring (DVR).

Actually, if we take $\pi \in K$ s.t. $v(\pi)=1$, any non-trivial ideal has the form $\left(\pi^{n}\right)$, thus (π) is the unique maximal ideal.

3. Discrete valuations and algebraic curves

Let X, Y be (affine, projective, or quasi-projective) variety over \mathbb{C}. Then the following are equivalent [Cor I.4.5, Har].

- X and Y are isomorphic on some non-empty Zariski open subsets.
- The function fields $\mathbb{C}(X), \mathbb{C}(Y)$ are isomorphic.

In these cases, X and Y are called birationally equivalent.

[Har] Hartshorne, "Algebraic Geometry", GTM 52.

3. Discrete valuations and algebraic curves

Summary

For an algebraic curve C over \mathbb{C}, we can construct a smooth projective curve \widetilde{C} birationally equivalent to C as the set of DVRs of $\mathbb{C}(C) / \mathbb{C}$.
Concisely, $\{$ points on $\widetilde{C}\} \stackrel{1: 1}{\longleftrightarrow}\{$ discrete valuations on $\mathbb{C}(C) / \mathbb{C}\}$

A point on \widetilde{C} s.t. the binational map $\widetilde{C} \rightarrow C$ is not defined is called an ideal point.

The valuation v associated to an ideal point of C can be
 characterized by $\exists f \in \mathbb{C}[C](\subset \mathbb{C}(C))$ s.t. $v(f)<0$.

4. Tree actions and incompressible surfaces

Let T be a tree (a connected graph with no cycle).
M : a 3-mfd, $\quad \tilde{M}$: the universal cover of M. $\pi_{1}(M) \curvearrowright T$: an action without inverting edges Consider a $\pi_{1}(M)$-equivariant map $f: \widetilde{M} \rightarrow T$.

For each mid point m_{e} of an edge $e \subset T$, we assume that f is transverse to m_{e}. Then $\widetilde{S}:=f^{-1}\left(m_{e}\right)$ is a surface in \widetilde{M}.

Since f is equivariant, \widetilde{S} gives a surface $S \subset M$. In this case, we say that $S \subset M$ is associated with $\pi_{1}(M) \curvearrowright T$.

If $\pi_{1}(M)$ acts on T without inverting edges, S is 2-sided.
An action $\pi_{1}(M) \curvearrowright T$ is called non-trivial if it has no global fixed point of $\pi_{1}(M)$.

Proposition [Cor 1.3.7, CGLS], [Prop 2.3.1, CS1]
If $\pi_{1}(M) \curvearrowright T$ is non-trivial, we can deform f so that the associated surface is essential.

4. Tree actions and incompressible surfaces

Proposition [Cor 1.3.7, CGLS], [Prop 2.3.1, CS1]

If $\pi_{1}(M) \curvearrowright T$ is non-trivial, we can deform f so that the associated surface is essential.

In the beginning of talk, I wrote that the CS theory
constructs an incompressible surface in M from an ideal point.

But, actually,
the CS theory constructs a non-trivial tree action of $\pi_{1}(M)$.

The tree action (and the translation length) is uniquely determined by the ideal point, but the associated essential surface is not uniquely determined.
5. Bass-Serre-Tits theory
ideal pt.

$$
p \in C C X(n)
$$

$K:$ a field, $\quad v: K^{*} \rightarrow \mathbb{Z}:$ valuation $\widehat{\mathcal{O}}=\{x \in K \mid v(x) \geq 0\} \quad$ (discrete valuation ring)

Let $\pi \in K$ be an element with $v(\pi)=1$.
We will construct a tree T associated with these data.
Let $V=K^{2}$. A lattice in V is a \mathcal{O}-submodule $L \subset V$ which spans V over K.

Two lattices L, L^{\prime} are equivalent if $\exists \alpha \in K^{*}$ s.t $L^{\prime}=\alpha L$.
Bass-Serre tree T
Define a tree T by
Vertices: equivalent classes of lattices $\Lambda=[L]$
Edges: $\Lambda, \Lambda^{\prime}$ are connected by an edge if \exists lattices L, L^{\prime} sit.

$$
\pi L \subset L^{\prime} \subset L, \quad\left(\Lambda=[L], \Lambda^{\prime}=\left[L^{\prime}\right]\right)
$$

5. Bass-Serre-Tits theory

Bass-Serre tree T

Vertices: equivalent classes of lattices $\Lambda=[L]$
Edges: $\Lambda, \Lambda^{\prime}$ are connected by an edge if \exists lattices L, L^{\prime} s.t.

$$
\pi L \subset L^{\prime} \subset L, \quad\left(\Lambda=[L], \Lambda^{\prime}=\left[L^{\prime}\right]\right)
$$

Let $k=\mathcal{O} /(\pi)$ (called the residue field). The above $L^{\prime} \subset L$ defines a line $L^{\prime} / \pi L \subset L / \pi L \cong k^{2}$. Thus the link of a vertex can be regarded as $P^{1}(k)$ (the projective line $/ k$).
$\mathrm{SL}_{2} K$ naturally acts on the tree $T . \int L_{2} \theta \subset S L_{2} K>T$ It is easy to see that $\mathrm{SL}_{2} \mathcal{O}$ fixes the lattice $\mathcal{O}^{2} \subset K^{2}$, thus fixing the vertex $\left[\mathcal{O}^{2}\right]$.

Moreover, it is known that if a subgroup $G \subset \mathrm{SL}_{2} K$ fixing a vertex of the tree, then G is conjugate into $\mathrm{SL}_{2} \mathcal{O}$ by an element of $\mathrm{GL}_{2} K$.

Further detail: [Se] Serve, "Trees", Springer.

6. Culler-Shalen's main construction

M : a ct. pori. 3-mfd with torus boundary
$R(M)=\operatorname{Hom}\left(\pi_{1}(M), \mathrm{SL}_{2} \mathbb{C}\right)$

$$
a_{\rho}(r)
$$

$\rho \in R(M)$ is written as

$$
\rho(\gamma)=\left(\begin{array}{ll}
a(\gamma)^{b} & b(\gamma) \\
c(\gamma) & d(\gamma)
\end{array}\right) \quad\left(\gamma \in \pi_{1}(M)\right)
$$

Thus we can regard $a(\gamma), b(\gamma), c(\gamma), d(\gamma) \in \mathbb{C}[R(M)]$. This gives a tautological representation $P: \pi_{1} M \rightarrow \mathrm{SL}_{2} \mathbb{C}[R(M)]$

$$
P(\gamma)=\left(\begin{array}{ll}
a(\gamma) & b(\gamma) \\
c(\gamma) & d(\gamma)
\end{array}\right) \in \mathrm{SL}_{2} \mathbb{C}[R(M)] .
$$

For any closed subset $D \subset R(M)$, the restriction of the tautological representation gives $P: \pi_{1} M \rightarrow \mathrm{SL}_{2} \mathbb{C}[D]$.

6. Culler-Shalen's main construction

$X(M)$: the character variety
$D \subset R(M)$
Take a curve $C \subset X(M)$. $V \mapsto \rho \in \widetilde{C}$
We can take an affine curve $D \subset t^{-1}(C) \subset R(M)$ s.t. the restriction $\left.t\right|_{D}: D \rightarrow C$ is not constant [proof of Prop 1.4.4 CS1]. We remark that $\mathbb{C}(D) / \mathbb{C}(C)$ is a finite extension.

An ideal point of C gives a valuation v on $\mathbb{C}(C)$, which gives a valuation w on the finite extension $\mathbb{C}(D)$.

This gives the tree associated with $\mathbb{C}(D)$ and the action

$$
\pi_{1}(M) \xrightarrow{P} \mathrm{SL}_{2} \mathbb{C}[D] \subset \mathrm{SL}_{2} \mathbb{C}(D) \curvearrowright T .
$$

(P : tautological rep.)

The Fundamental Theorem [Thm 2.2.1, CS1]

For an affine curve $C \subset X(M)$ and the ideal point p, the associated tree action is non-trivial.

Remark: A non-ideal point of \widetilde{C} also gives a tree action, but it has a global fixed point, is not interesting.

6. Culler-Shalen's main construction

$$
\begin{aligned}
& w \leftrightarrow q \in \widetilde{D} \rightarrow D \subset R(M) \\
& \downarrow \\
& \downarrow \downarrow \\
& v \downarrow \\
& p \in \widetilde{C} \rightarrow C \subset X(M)
\end{aligned}
$$

For $\gamma \in \pi_{1}(M), v\left(\tau_{\gamma}\right) \geq 0$ if and only if γ fixes a vertex of T [Chm 2.2.1, CS1], [Prop 1.2.6, CGLS]. In this case, we

$$
v\left(\tau_{r}\right) \geq 0
$$ can deform γ avoiding the associated surface S.

Thus if $\exists \alpha, \beta \in \pi_{1}(\partial M)$ s.t. $v\left(\tau_{\alpha}\right) \geq 0$ and $v\left(\tau_{\beta}\right)<0, \alpha$ is a boundary slope.

Moreover, the translation length of $\gamma \in \pi_{1}(M)$ is given by

$$
\min \left(0,-2 w\left(\tau_{\gamma}\right)\right)
$$

[Prop II.3.15, MS1].
[MS1] Morgan-Shalen. "Valuations, trees, and
$\exists \beta \in \pi_{1}(\partial m)$
$\nu\left(\tau_{\beta}\right)<0$
$\Rightarrow r_{i,}$
万- slope. degeneration of hyperbolic structures. I," Ann. of Math. (2) 120(1984), 401-476.
7. Cyclic Surgery Theorem

In $\S 1$ of [CGLS], the following theorem is proved as an application of the CS theory.

Theorem (CGLS, Thm 1.0.1)
Let M be a hyperbolic orientable 3-manifold with one torus boundary. Let α, β be slopes s.t. $\pi_{1}(M(\alpha)), \pi_{1}(M(\beta))$ are cyclic. If neither α nor β is strict boundary slope then $\Delta(\alpha, \beta) \leq 1$.

A slope ∂M is called a boundary slope if it is the boundary of some essential surface. A slope is called a strict boundary slope if it is the slope of some non-fiber essential surface.

Remark: The boundary slope detected by CS theory (more generally, detected by a tree action) is a strict boundary slope [CGLS, Prop 1.2.7].

The remaining part of the cyclic surgery theorem is proved in [§2, CGLS] by using different techniques.
$M(\alpha):$
$m+1$ obtained by Dehorn surer along α.
essential snttace
$S \subset M$
(i) incompressible,
(ii) not parallel to ∂M.

7. Cyclic Surgery Theorem

Theorem (CGLS, Thm 1.0.1)

Let M be a hyperbolic orientable 3-manifold with one torus boundary. Let α, β be slopes s.t. $\pi_{1}(M(\alpha)), \pi_{1}(M(\beta))$ are cyclic. If neither r nor s is strict boundary slope then $\Delta(\alpha, \beta) \leq 1$.

A hyperbolic structure on M gives a discrete faithful representation $\rho_{0}: \pi_{1} M \rightarrow \mathrm{PSL}_{2} \mathbb{C}=\operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right)$, which is irreducible.

There exists a lift $\widetilde{\rho_{0}}: \pi_{1} M \rightarrow \mathrm{SL}_{2} \mathbb{C}$ of ρ_{0} [Prop 3.1.1, CS1]. (Since the obstruction to the lifting is living in $H^{2}(M ; \mathbb{Z} / 2 \mathbb{Z})$, trivial for knot exteriors.)

7. Cyclic Surgery Theorem

Take an irreducible component $R_{0} \subset R(M)$ containing $\widetilde{\rho_{0}}$ and $X_{0}=t\left(R_{0}\right)$.

Proposition [Prop 1.1.1, CGLS]

$\operatorname{dim} X_{0}=1$. For any non-trivial $\gamma \in \pi_{1}(\partial M), \tau_{\gamma}$ is
$R(m)$ non-constant. (Recall $\tau_{\gamma}([\rho])=\operatorname{tr} \rho(\gamma)$ for $[\rho] \in X_{0}$.)
$\operatorname{dim} X_{0} \geq 1$ is rather elementary [Prop 3.2.1, CS1], which is

$$
=H_{\text {sm }}\left(\pi, M, S L_{2} \mathbb{C}\right)
$$ the same line of argument as Theorem 5.6 of Thurston's Lecture Notes.

$\operatorname{dim} X_{0} \leq 1$ is shown in [Prop 2, CS2] using some local rigidity result. The second assertion also follows from [Prop 2, CS2].
[CS2] Culler-Shalen, "Bounded, separating, incompressible surfaces in knot manifolds," Invent., 75(1984), 537-545.

$$
\begin{aligned}
\widetilde{\rho}_{0} \in & R_{0} \subset R(M) \\
& \left.\downarrow t\right|_{R_{0}} \perp t \\
& X_{0} \subset X(M) \\
& \\
& t\left(R_{0}\right)
\end{aligned}
$$

Remark: For the (p, q)-torus knot exterior, $\exists \gamma \in \pi_{1}(\partial M)$
s.t. τ_{γ} is constant on the component $X_{0} \subset X(M)$ containing irreducible characters.

7. Cyclic Surgery Theorem

For $\alpha \in \pi_{1}(\partial M) \cong H_{1}(\partial M ; \mathbb{Z}) \cong \mathbb{Z}^{2}$, we consider the trace function $\tau_{\alpha} \in \mathbb{C}\left[X_{0}\right] .\left(\tau_{\alpha}([\rho])=\operatorname{tr} \rho(\gamma)\right.$ for $[\rho] \in X_{0}$.) Define

$$
f_{\alpha}:=\tau_{\alpha}^{2}-4 \in \mathbb{C}\left[X_{0}\right] .
$$

If $f_{\alpha}(\rho)=0$, then $\operatorname{tr} \rho(\alpha)= \pm 2$, thus $\rho(\alpha)$ is conjugate to

The former case gives a representation $\pi_{1}(M(\alpha)) \rightarrow \mathrm{PSL}_{2} \mathbb{C} .(M(\alpha):$ Dehn filling along $\alpha) P: \pi_{1} M \rightarrow P S L_{2} \mathbb{C}$
If the image is "large", $\pi_{1}(M(\alpha))$ could not be cyclic
So it is important to study zeros of f_{α} for $\alpha \in H_{1}(\partial M ; \mathbb{Z})$.
We denote the order of zero of $f \in \mathbb{C}\left(X_{0}\right)=\mathbb{C}\left(\widetilde{X}_{0}\right)$ at $x \in \widetilde{X}_{0}$ by $Z_{x}(f)$. (\widetilde{X}_{0} : smooth projective model of $\left.X_{0}\right)$

7. Cyclic Surgery Theorem

Theorem (CGLS, Thm 1.0.1)

Let α, β be slopes s.t. $\pi_{1}(M(\alpha)), \pi_{1}(M(\beta))$ are cyclic. If neither α nor β is strict boundary slope then $\Delta(\alpha, \beta) \leq 1$.

The proof divided into the following 2 propositions.
Proposition [Prop 1.1.2, CGLS] $\subseteq \mathbb{R}^{2}$
There exists a norm $\|\cdot\|: \underline{H_{1}(\partial M ; \mathbb{R})} \rightarrow \mathbb{R}_{\geq 0}$ st.

- For $\alpha \in H_{1}(\partial M, \mathbb{Z}),\|\alpha\|=\operatorname{deg} f_{\alpha}$.
- The unit ball is a finite-sided polygon whose vertices are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let $\alpha \in H_{1}(\partial M ; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_{1}(M(\alpha))$ is cyclic, then for any $x \in \widetilde{X}_{0}$, we have

$$
Z_{x}\left(f_{\alpha}\right) \leq Z_{x}\left(f_{\delta}\right) \quad\left(\forall \delta \in H_{1}(\partial M ; \mathbb{Z}), \delta \neq 0\right) .
$$

7. Cyclic Surgery Theorem

Proposition [Prop 1.1.2, CGLS]

There exists a norm $\|\cdot\|: H_{1}(\partial M ; \mathbb{R}) \rightarrow \mathbb{R}_{\geq 0}$ st.

- For $\alpha \in H_{1}(\partial M, \mathbb{Z}),\|\alpha\|=\operatorname{deg} f_{\alpha}$.
- The unit ball is a finite-sided polygon whose vertices are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let $\alpha \in H_{1}(\partial M ; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_{1}(M(\alpha))$ is cyclic, then for any $x \in \widetilde{X}_{0}$, we have

$$
Z_{x}\left(f_{\alpha}\right) \leq Z_{x}\left(f_{\delta}\right) \quad\left(\forall \delta \in H_{1}(\partial M ; \mathbb{Z}), \delta \neq 0\right) .
$$

Since $\sum_{x \in \tilde{X}_{0}} Z_{x}(f)=\operatorname{deg} f$, we deduce the following.

$\mathbb{C P}^{1}$

$$
\|\alpha\| \leq\|\delta\| \quad\left(\forall \delta \in H_{1}(\partial M ; \mathbb{Z}), \delta \neq 0\right)
$$

7. Cyclic Surgery Theorem

Corollary [Cor 1.1.4, CGLS]

Let $\alpha \in H_{1}(\partial M ; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_{1}(M(\alpha))$ is cyclic,

$$
\|\alpha\| \leq\|\delta\| \quad\left(\forall \delta \in H_{1}(\partial M ; \mathbb{Z}), \delta \neq 0\right) .
$$

Theorem (CGLS, Thm 1.0.1)

Let α, β be slopes s.t. $\pi_{1}(M(\alpha)), \pi_{1}(M(\beta))$ are cyclic. If neither α nor β is strict boundary slope then $\Delta(\alpha, \beta) \leq 1$. Corollary to Theorem

Let $L:=H_{1}(\partial M ; \mathbb{Z}) \cong \mathbb{Z}^{2}, V:=H_{1}(\partial M ; \mathbb{R}) \cong \mathbb{R}^{2}$.
Let $m=\min _{0 \neq \delta \in L}\|\delta\|, B$ the ball of radius m in V w.r.t. $\|\cdot\|$.
B is a finite sided balanced $(B=-B)$ convex polygon [Prop 1.1.2, CGLS], contains no integral point in the interior by the definition of m.

Since $\operatorname{Int} B$ is mapped to $V / 2 L$ injectively, Area $B \leq 4$.

7. Cyclic Surgery Theorem

Corollary [Cor 1.1.4, CGLS]

Let $\alpha \in H_{1}(\partial M ; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_{1}(M(\alpha))$ is cyclic,

$$
\|\alpha\| \leq\|\delta\| \quad\left(\forall \delta \in H_{1}(\partial M ; \mathbb{Z}), \delta \neq 0\right) .
$$

Theorem (CGLS, Thm 1.0.1)

Let α, β be slopes s.t. $\pi_{1}(M(\alpha))$, $\pi_{1}(M(\beta))$ are cyclic. If neither α nor β is strict boundary slope then $\Delta(\alpha, \beta) \leq 1$.

If $\Delta(\alpha, \beta)=2$, then $P=B$, which implies that α and β are vertices of B, thus they are strict boundary slopes.

7. Cyclic Surgery Theorem

We have left to show

Proposition [Prop 1.1.2, CGLS]

There exists a norm $\|\cdot\|: H_{1}(\partial M ; \mathbb{R}) \rightarrow \mathbb{R}_{\geq 0}$ s.t.

- For $\alpha \in H_{1}(\partial M, \mathbb{Z}),\|\alpha\|=\operatorname{deg} f_{\alpha}$.
- The unit ball is a finite-sided polygon whose vertices are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let $\alpha \in H_{1}(\partial M ; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_{1}(M(\alpha))$ is cyclic, then for any $x \in \widetilde{X}_{0}$, we have

$$
Z_{x}\left(f_{\alpha}\right) \leq Z_{x}\left(f_{\delta}\right) \quad\left(\forall \delta \in H_{1}(\partial M ; \mathbb{Z}), \delta \neq 0\right) .
$$

The norm is called the Culler-Shalen norm.

7. Cyclic Surgery Theorem

We denote the order of pole of $f \in \mathbb{C}\left(X_{0}\right)=\mathbb{C}\left(\widetilde{X}_{0}\right)$ at $\quad X_{0}$ $x \in \widetilde{X}_{0}$ by $\Pi_{x}(f)$. We have

$$
\operatorname{deg} f=\sum_{x \in \tilde{X}_{0}} Z_{x}(f)=\sum_{x \in \tilde{X}_{0}} \Pi_{x}(f) .
$$

Furthermore, if f is a regular function on $X_{0}\left(f \in \mathbb{C}\left[X_{0}\right]\right)$,

$$
\operatorname{deg} f=\sum_{x \in \widetilde{X}_{0}} \Pi_{x}(f)=\sum_{x: \text { ideal }} \Pi_{x}(f)
$$

Lemma [Lem 1.4.1, CGLS]

For each ideal point $x \in \widetilde{X}_{0}$, there exists a homomorphism
 $\phi_{x}: L \rightarrow \mathbb{Z}$ s.t.
$H_{1}^{\prime \prime}(\partial M ; \mathbb{Z})$
We use
$\stackrel{\Pi_{2}}{2} \quad \Pi_{x}\left(f_{\alpha}\right)=\left|\phi_{x}(\alpha)\right|$.
Theorem [Thm 1.2.3, CGLS], [Lem II.4.4, MS1]
A valuation v on $\mathbb{C}\left(X_{0}\right)^{*}$ is extended to a valuation w on $\mathbb{C}\left(R_{0}\right)^{*}$ s.t. $\left.w\right|_{\mathbb{C}\left(X_{0}\right)^{*}}=d \cdot v$ for some $d \in \mathbb{N}$.

7. Cyclic Surgery Theorem

For each ideal point $x \in \widetilde{X}_{0}$, there exists a homomorphism $\phi_{x}: L \rightarrow \mathbb{Z}$ st.

$$
\Pi_{x}\left(f_{\alpha}\right)=\left|\phi_{x}(\alpha)\right| .
$$

Proof. Fix a basis $\alpha_{1}, \alpha_{2} \in L$. If $\rho\left(\alpha_{i}\right) \sim\left(\begin{array}{cc}\lambda_{i} & * \\ 0 & \lambda_{i}^{-1}\end{array}\right)$, If
$=\left(\operatorname{tr} P\left(L_{i}\right)\right)^{2}-4$

$$
\begin{array}{ll}
=\left(\operatorname{tr} P\left(\mu_{i}\right)\right)^{2}-4 & \left(\begin{array}{ll}
\lambda_{i}^{-1}
\end{array}\right)^{\prime} \\
f_{\alpha_{i}}=\left(\lambda_{i}+\lambda_{i}^{-1}\right)^{2}-4=\left(\lambda_{i}-\lambda_{i}^{-1}\right)^{2} . & V(f)>0
\end{array}
$$

In general, for $f \neq 0, \pm 1$, we have
$-\min \left(0, v\left(f-f^{-1}\right)\right)=|v(f)| .\binom{$ Egg. if $v(f)>0, v(f-1)=-v(f)<0}{$, thus $v\left(f-f^{-1}\right)=-v(f)=-|v(f)|} \quad$ thus $\quad V\left(f^{-1}\right)<0$
Thus, for $\alpha=\alpha_{1}^{p} \alpha_{2}^{q} \in L$,

$$
\begin{aligned}
\Pi_{x}\left(f_{\alpha_{1}^{p} \alpha_{2}^{q}}\right) & =\Pi_{x}\left(\lambda_{1}^{p} \lambda_{2}^{q}-\lambda_{1}^{-p} \lambda_{2}^{-q}\right)^{2} \\
& =-\min \left(0, v\left(\left(\lambda_{1}^{p} \lambda_{2}^{q}-\lambda_{1}^{-p} \lambda_{2}^{-q}\right)^{2}\right)\right) \\
& =-\frac{2}{d} \min \left(0, w\left(\lambda_{1}^{p} \lambda_{2}^{q}-\lambda_{1}^{-p} \lambda_{2}^{-q}\right)\right) \\
& =\frac{2}{d}\left|w\left(\lambda_{1}^{p} \lambda_{2}^{q}\right)\right|=\frac{2}{d}\left|p w\left(\lambda_{1}\right)+q w\left(\lambda_{2}\right)\right| .
\end{aligned}
$$

$$
v\left(f-f^{-1}\right)=-v(f)
$$

$$
=-|V(f)|
$$

So set $\phi_{x}(\alpha)=\frac{2}{d}\left|p w\left(\lambda_{1}\right)+q w\left(\lambda_{2}\right)\right|$.

7. Cyclic Surgery Theorem

Lemma [Lem 1.4.1, CGLS]

For each ideal point $x \in \widetilde{X}_{0}$, there exists a homomorphism $\phi_{x}: L \rightarrow \mathbb{Z}$ st.

$$
\Pi_{x}\left(f_{\alpha}\right)=\left|\phi_{x}(\alpha)\right| .
$$

Proposition [Prop 1.1.2, CGLS]

There exists a norm $\|\cdot\|: H_{1}(\partial M ; \mathbb{R}) \rightarrow \mathbb{R}_{\geq 0}$ st.

- For $\alpha \in H_{1}(\partial M, \mathbb{Z}),\|\alpha\|=\operatorname{deg} f_{\alpha}$.
- The unit ball is a finite-sided polygon whose vertices are rational multiple of strict boundary slopes.

Sketch. Define

$$
\|\alpha\|=\sum_{x \cdot \text { ideal }}\left|\phi_{x}(\alpha)\right|(\alpha \in V) \text {. }
$$

It is easy to see $\|\cdot\|$ is a semi-norm. Since f_{α} is non-const. for $0 \neq \alpha \in L$, this is a norm. The first assertion follows from Lem. Since a vertex of the unit ball is on the line $\phi_{x}=0$ for some x, thus the end assertion follows.

7. Cyclic Surgery Theorem

We have left to show

Proposition [Prop 1.1.3, CGLS]

Let $\alpha \in H_{1}(\partial M ; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_{1}(M(\alpha))$ is cyclic, then for any $x \in \widetilde{X}_{0}$, we have

$$
Z_{x}\left(f_{\alpha}\right) \leq Z_{x}\left(f_{\delta}\right) \quad\left(\forall \delta \in H_{1}(\partial M ; \mathbb{Z}), \delta \neq 0\right) .
$$

This is further divided into two cases:

- x is non-ideal [$\S 1.5$, p.254~260, CGLS], and "ordinary pt"
- x is ideal [$\S 1.6, \mathrm{p} .260 \sim 264$, CGLS].
(By the way, §1.1~1.4 (p.242~254).)
We show

$$
0 \neq \exists \delta \in L, Z_{x}\left(f_{\alpha}\right)>Z_{x}\left(f_{\delta}\right) \Longrightarrow \pi_{1}(M(\alpha)) \text { is not cyclic. }
$$

7. Cyclic Surgery Theorem

$$
0 \neq \exists \delta \in L, Z_{x}\left(f_{\alpha}\right)>Z_{x}\left(f_{\delta}\right) \Longrightarrow \pi_{1}(M(\alpha)) \text { is not cyclic. }
$$

- If x is non-ideal, find $\rho \in R_{0}$ s.t.
(i) $t(\rho)=x$,
(ii) $\rho\left(\pi_{1}(M)\right)$ is non-cyclic in $\mathrm{PSL}_{2} \mathbb{C}$,
(iii) $\rho(\alpha)= \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
(Recall $t: R(M) \rightarrow X(M)$.) So $\pi_{1}(M(\alpha))$ is non-cyclic.
- If x is ideal, let S be the associated essential surface. Since $Z_{x}\left(f_{\alpha}\right)>0, \tau_{\alpha}$ is finite at x. Thus α is boundary slope of S, or S is closed.
But we assume that α is not a strict boundary slope, S is closed.
We show that S is incompressible in $M(\alpha)$. (Technical part of §1.6.) In particular, $\pi_{1}(M(\alpha))\left(\supset \pi_{1}(S)\right)$ is non-cyclic.

7. Cyclic Surgery Theorem

Technical points in $\S 1.5$ of CGLS
We have to take the normalizations X_{0}^{ν}, R_{0}^{ν} of X_{0}, R_{0} (taking integral closure of the coordinate rings) to avoid singularities.

We ignore these technical details.
Proposition [Prop 1.5.2, CGLS]

$$
H_{11}(\partial m: 2) \cong \mathbb{Z}^{2}
$$

For $x \in X_{0}^{\nu}$ (non-ideal point), assume that $0 \neq \exists \delta \in L$ st.
$Z_{x}\left(f_{\alpha}\right)>Z_{x}\left(f_{\delta}\right)$. Then $\exists \rho \in R_{0}$ s.t.
(i) $t(\rho)=\nu(x)$,
(ii) $\rho\left(\pi_{1}(M)\right)$ is non-cyclic in $\mathrm{PSL}_{2} \mathbb{C}$,
(iii) $\rho(\alpha)= \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

$$
x \in X_{0}^{v} \stackrel{r}{\rightarrow} X_{\substack{\infty \\ r}}^{\substack{r(x) \\ 35 / 41}}
$$

7. Cyclic Surgery Theorem

Proposition [Prop 1.5.2, CGLS]

For $x \in X_{0}^{\nu}$ (non-ideal point), assume that $0 \neq \exists \delta \in L$ s.t. $Z_{x}\left(f_{\alpha}\right)>Z_{x}\left(f_{\delta}\right)$. Then $\exists \rho \in R_{0}$ s.t.
(i) $t(\rho)=\nu(x)$,
(ii) $\rho\left(\pi_{1}(M)\right)$ is non-cyclic in $\mathrm{PSL}_{2} \mathbb{C}$,

$$
\text { (iii) } \rho(\alpha)= \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text {. }
$$

It is shown that
(i) t^{ν} is surjective [Prop 1.5.6, CGLS].
(ii) \exists dense $U \subset\left(t^{\nu}\right)^{-1}(x)$ s.t. $\rho \in \nu(U)$ has non-cyclic image [Prop 1.5.5, CGLS].
(iii) For $\widetilde{\rho} \in\left(t^{\nu}\right)^{-1}(x), \nu(\widetilde{\rho})(\alpha)= \pm 1$ [Prop 1.5.4, CGLS].
(i) is technical. We give sketches of (ii) and (iii).

7. Cyclic Surgery Theorem

(ii) Since $\operatorname{dim} X_{0}^{\nu}=1, \operatorname{dim} R_{0}^{\nu}=\operatorname{dim} X_{0}^{\nu}+3=4$. Thus

$$
R_{0}^{4-\operatorname{lin}} t^{-1}(x)
$$

On the other hand, let $Z=\left\{\rho \in t^{-1}(\nu(x)) \mid \rho\left(\pi_{1}(M)\right)\right.$ is cyclic in $\left.\mathrm{PSL}_{2} \mathbb{C}\right\} \subset R_{0}, \quad x \in X_{0} \uparrow-l_{\text {in }}$ and $\mathcal{N}=\{\operatorname{ker} \rho \mid \rho \in Z\}$. Since the set of finite index subgroups of $\pi_{1}(M)$ is countable, \mathcal{N} is countable. For each $N \in \mathcal{N}$, let $Y_{N}:=\left\{\rho \in t^{-1}(x) \mid \rho(N)=\{1\}\right\}$. We have $Z \subset \bigcup_{N \in \mathcal{N}} Y_{N}$, and $\operatorname{dim} Y_{N} \leq 2$ since $\rho \in Y_{N}$ is (almost) determined by the image of the cyclic generator.

Set $U=\frac{\left(t^{\nu}\right)^{-1}(x)}{\operatorname{dim} \geq 3}-\frac{\nu^{-1}\left(\bigcup_{N \in \mathcal{N}} Y_{N}\right)}{\operatorname{dim} \leq 2}$.
(iii) Since $Z_{x}\left(f_{\alpha}\right)>Z_{x}\left(f_{\delta}\right) \geq 0,0=f_{\alpha}(x)=\operatorname{tr} \rho(\alpha)^{2}-4$, so $\operatorname{tr} \rho(\alpha)= \pm 2$. Thus $\rho(\alpha) \sim \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ or $\pm\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
Using the assumption, we can show that the former holds.

7. Cyclic Surgery Theorem

Proposition [Prop 1.5.4, CGLS]

Let $0 \neq \alpha, \delta \in H_{1}(\partial M ; \mathbb{Z})$ and $x \in X_{0}^{\nu}$.
Assume $Z_{x}\left(f_{\alpha}\right)>Z_{x}\left(f_{\delta}\right) \geq 0$ (thus $\operatorname{tr} \rho(\alpha)= \pm 2$).

$$
\widetilde{\rho} \in\left(t^{\nu}\right)^{-1}(x) \Longrightarrow \nu(\widetilde{\rho})(\alpha)= \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

We use the following lemma.

Lemma [Lem 1.5.7, CGLS]

$K:$ a filed, $\quad v: K^{*} \rightarrow \mathbb{Z}:$ a discrete valuation
$\mathcal{O}=\{f \in K \mid v(f) \geq 0\}$: the DVR.
$\mathcal{M}=\{f \in K \mid v(f)>0\}:$ its maximal ideal
For $A, B \in \mathrm{SL}_{2}(\mathcal{O})$ s.t. $[A, B]=0$,
$v\left((\operatorname{tr} A)^{2}-4\right)>v\left((\operatorname{tr} B)^{2}-4\right) \Longrightarrow A \equiv \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \bmod \mathcal{M}$.

7. Cvclic Surgerv Theorem

Lemma [Lem 1.5.7, CGLS]

For $A, B \in \mathrm{SL}_{2}(\mathcal{O})$ s.t. $[A, B]=0$,
$v\left((\operatorname{tr} A)^{2}-4\right)>v\left((\operatorname{tr} B)^{2}-4\right) \Longrightarrow A \equiv \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \bmod \mathcal{M}$.

Sketch.

(After taking a quadratic field extension) A and B are simultaneously upper triangulable:

$$
A=\left(\begin{array}{cc}
a & x \\
0 & a^{-1}
\end{array}\right), B=\left(\begin{array}{cc}
b & y \\
0 & b^{-1}
\end{array}\right)\left(x, y, a^{ \pm 1}, b^{ \pm 1} \in \frac{\mathcal{O})}{l} .\right.
$$

Since $(\operatorname{tr} A)^{2}-4=\left(a+a^{-1}\right)^{2}-4=\left(a-a^{-1}\right)^{2}$,
$v\left((\operatorname{tr} A)^{2}-4\right)=2 \cdot v\left(a-a^{-1}\right)$.
Thus $v\left((\operatorname{tr} A)^{2}-4\right)>v\left((\operatorname{tr} B)^{2}-4\right)$ implies
$v\left(a-a^{-1}\right)>v\left(b-b^{-1}\right)$, Thus $v\left(a-a^{-1}\right)>0$, which implies $a \equiv \pm 1 \bmod \mathcal{M}$.'。

Since A and B commute, $\left(b-b^{-1}\right) x=\left(a-a^{-1}\right) y$, thus

$$
v(x) \geq v(x)-v(y)=v\left(a-a^{-1}\right)-v\left(b-b^{-1}\right)>0 .
$$

$u(x)>0$ means $x \in \mathcal{M}$, i.e. $x \equiv 0 \bmod \mathcal{M}$.

7. Cyclic Surgery Theorem

Proposition [Prop 1.5.4, CGLS]

Let $0 \neq \alpha, \delta \in H_{1}(\partial M ; \mathbb{Z})$ and $x \in X_{0}^{\nu}$.
Assume $Z_{x}\left(f_{\alpha}\right)>Z_{x}\left(f_{\delta}\right) \geq 0$ (thus $\operatorname{tr} \rho(\alpha)= \pm 2$). $W \longleftrightarrow Q \subset t^{-1}(x) \subset R_{0}$

$$
\tilde{\rho} \in\left(t^{\nu}\right)^{-1}(x) \Longrightarrow \nu(\widetilde{\rho})(\alpha)= \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Sketch. For each component $Q \subset\left(t^{\nu}\right)^{-1}(x) \subset R_{0}^{\nu}$, since $Q \subset R_{0}^{\nu}$ is a codimension 1 subvariety, Q determines a discrete valuation w on $F=\mathbb{C}\left(R_{0}^{\nu}\right)=\mathbb{C}\left(R_{0}\right)$. Let v be the valuation corresponding to $x=t^{\nu}(Q) \in X_{0}^{\nu}$. Then $\exists d \in \mathbb{N}$ $t(Q) \subset X_{0}$ s.t. $\left.w\right|_{\mathbb{C}\left(X_{0}\right)^{*}}=d \cdot v$. Since $x \in X_{0}^{\nu}$ is non-ideal, we have
$Z_{x}\left(f_{\delta}\right)<Z_{x}\left(f_{\alpha}\right)=v\left(f_{\alpha}\right)=\frac{1}{d} w\left((\operatorname{tr} P(\alpha))^{2}-4\right)$
where $P: \pi_{1}(M) \rightarrow \mathrm{SL}_{2}\left(\mathbb{C}\left(R_{0}\right)\right)$ is the tautological rep.
Likewise for δ. Thus the assumption implies
$w\left((\operatorname{tr} P(\alpha))^{2}-4\right)>w\left((\operatorname{tr} P(\delta))^{2}-4\right)$, thus by Lem 1.5.7,
$P(\alpha)= \pm l \bmod \mathcal{M}_{w}$ This means that, for $\rho \in \nu(Q)$,
$\rho(\alpha)= \pm I$.

References

[CS1] Culler-Shalen, "Varieties of group representations and splittings of 3-manifolds," Ann. of Math., 117(1983), 109-146.
[CS2] Culler-Shalen, "Bounded, separating, incompressible surfaces in knot manifolds," Invent. math., 75(1984), 537-545.
[CGLS] Culler-Gordon-Luecke-Shalen, "Dehn surgery on knots," Ann. of Math., 125(1987), 237-300.
[Har] Hartshorne, " Algebraic Geometry", GTM 52.
[MS1] Morgan-Shalen. "Valuations, trees, and degenerations of hyperbolic structures. I," Ann. of Math. (2) 120(1984), 401-476.
[Se] Serre, " Trees", Springer.

