Culler-Shalen 理論の概説

^{かばや} 蒲谷祐一

北見工業大学

微分トポロジー'22 -デーン手術-オンライン 2022 年 3 月 20 日

1. Introduction - Outline - $K \subset S^3$: a knot in S^3

 $M = S^3 \setminus N(K)$: knot exterior (more generally, cpt. ori. 3-mfd with torus boundary)

 $X(M) = \{$ homom. $\pi_1(M) \rightarrow SL_2\mathbb{C}$ "up to conjugation" $\}$

is an affine algebraic set over $\mathbb C,$ called the character variety.

 $C \subset X(M)$: irreducible (affine) curve (possibly singular)

 $\begin{array}{l} {\cal C} : \mbox{ smooth projective curve birationally equiv. to } {\cal C} \\ (\varphi: \widetilde{{\cal C}} \xrightarrow{\mbox{ birat.}} {\cal C}) \end{array}$

A point $p \in \widetilde{C}$ at which φ is not defined is called an *ideal point*.

Culler-Shalen theory (in a word)

Construct an *incompressible surface* in M from an ideal point.

1. Introduction - incompressible surfaces -

M: a cpt. ori. 3-mfd with boundary

A surface $S \subset M$ is properly embedded if $S \cap \partial M = \partial S$, and S intersects ∂M transversely.

We assume that S is 2-sided in M and does not have S^2 , D^2 components.

Definition

- A disk D ⊂ M s.t. D ∩ S = ∂D is called a *compressing* disk if D ∩ S is an essential simple closed curve on S.
- *S* is *incompressible* if each component of *S* has no compressing disk.
- *S* is called *essential* if it is incompressible and not boundary parallel.

By the loop theorem, a 2-sided surface $S \subset M$ is incompressible if and only if $\pi_1(S) \to \pi_1(M)$ is injective (for each component).

1. Introduction - Application -

Today we focus on the application of Culler-Shalen theory to the Cyclic Surgery Theorem.

Let $M = S^3 \setminus N(K)$ be a knot exterior. We denote the intersection number of two slopes $\alpha, \beta \subset \partial M$ by $\Delta(\alpha, \beta)$.

The Dehn filling of *M* along a slope α is denoted by $M(\alpha)$.

Cyclic Surgery Theorem (Culler-Gordon-Luecke-Shalen)

Let K be a non-torus knot and M its exterior. If $\pi_1(M(\alpha))$ and $\pi_1(M(\beta))$ are cyclic^{*}, $\Delta(\alpha, \beta) \leq 1$.

* Including the trivial group and $\mathbb{Z}.$

We identify the set of slopes on ∂M with $\mathbb{Q} \cup \{1/0\}$.

Since $M(1/0) \cong S^3$ has a cyclic π_1 , $\pi_1(M(\alpha))$ is cyclic only if α is integral. There are at most two such slopes, and if there are two they are consecutive.

(Ex: (-2, 3, 7)-pretzel has two cyclic slopes 18 and 19.)

Pm + & L] P/G_

Ф

Plan

1. Intro

- 2. Basics on the character variety X(M) [§1, CS1]
- 3. Discrete valuations and algebraic curves
- 4. Tree actions and incompressible surfaces [§2, CS1]
- 5. Bass-Serre-Tits theory [§2, CS1]
- 6. Culler-Shalen's main construction [CS1]
- 7. Cyclic Surgery Theorem [CGLS]

References

[CS1] Culler-Shalen, "Varieties of group representations and splittings of 3-manifolds," Ann. of Math., 117(1983), 109-146.

[CGLS] Culler-Gordon-Luecke-Shalen, "Dehn surgery on knots," Ann. of Math., 125(1987), 237-300.

20 pages

2. Basics on the character variety

$$\mathsf{SL}_2\mathbb{C} = \{ \begin{pmatrix} \mathsf{a} & b \\ \mathsf{c} & d \end{pmatrix} \mid \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{C}, \ \mathsf{ad} - \mathsf{bc} = 1 \}$$

 $\Gamma = \langle g_1, \cdots, g_n \mid r_1, \cdots, r_k \rangle$: a finitely presented group $\bigcap \prec \mathcal{T}, \mathcal{M}$

 $\chi(m)$

For a manifold M, we denote $R(M) := R(\pi_1(M))$.

 $ho \in R(\Gamma)$ is determined by $(
ho(g_1), \cdots,
ho(g_n)) \in SL_2\mathbb{C}^n \subset \mathbb{C}^{4n}.$ Conversely, any subset of $SL_2\mathbb{C}^n$ satisfying $ho(r_i) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

 $(i = 1, \cdots, k)$ gives a point of $R(\Gamma)$.

Thus $R(\Gamma)$ is an affine algebraic set (possibly reducible), sometimes called the *representation variety*.

2. Basics on the character variety

Consider the set of *characters*

{tr $\rho \mid \rho \in R(\Gamma)$ }.

This has a structure of affine algebraic set as follows.

Let $\mathbb{C}[R(\Gamma)]$ be the set of regular functions^{*} on $R(\Gamma)$. (* functions $R(\Gamma) \to \mathbb{C}$ written as polynomials of affine coordinates of $R(\Gamma)$.)

T[R(r)]

 $\tau_{\gamma}(\rho) := \operatorname{tr} \rho(\gamma) \qquad \rho \in \mathcal{R}(\Lambda)$ is a regular function on $R(\Gamma)$. Let T be the subring of $R(\Gamma)$ $(\Gamma \cap \Gamma)$ generated by τ_{γ} ($\gamma \in \Gamma$). We will see that T is the ring of regular functions on $\{ tr \rho \mid \rho \in R(\Gamma) \}$. $\langle \chi, \gamma | \dots \rangle$

Proposition [Prop 1.4.1, CS1]

For $\gamma \in \Gamma$.

There exists a finite set $\{\gamma_1\}_{i=1}^N \subset \Gamma$ s.t. $\{\tau_{\gamma_i}\}$ generates T. $\mathcal{T}_{\mathcal{Y}}\mathcal{Y}^{\perp} = \mathcal{T}_{\{\mathcal{Y}\mathcal{Y}\}}$.

Idea. Using the trace identity tr A tr B =tr AB +tr AB^{-1} , any τ_g is written as a polynomial of finite τ_{γ_i} 's.

= Txy. Ty - Ty

2. Basics on the character variety Proposition [Prop 1.4.1, CS1]

There exists a finite set $\{\gamma_i\}_{i=1}^N \subset \Gamma$ s.t. $\{\tau_{\gamma_i}\}$ generates T.

For such a finite set $\{\gamma_i\}_{i=1}^N \subset \Gamma$, define a map $t : R(\Gamma) \to \mathbb{C}^N$ by $t(\rho) = (\tau_{\gamma_1}(\rho), \cdots, \tau_{\gamma_N}(\rho)). \quad \notin \quad \checkmark$

By the proposition above, $\{\operatorname{tr} \rho \mid \rho \in R(\Gamma)\}$ is identified with

$$X(\Gamma) := t(R(\Gamma))$$

Proposition [Prop 1.4.4, Cor 1.4.5, CS1]

 $X(\Gamma) = t(R(\Gamma))$ is a (Zariski) closed subset in \mathbb{C}^N , thus $X(\Gamma)$ is an affine algebraic set.

Thus the set of the characters $\{tr \rho \mid \rho \in R(\Gamma)\}$ has a structure of affine algebraic set via $X(\Gamma)$. $X(\Gamma)$ is called the *character variety* of Γ .

$$t: R(\Gamma) \to X(\Gamma)$$
 is a regular map.

2. Basics on the character variety

• $\rho, \rho' \in R(\Gamma)$ are conjugate if $\exists A \in SL_2\mathbb{C}$ s.t.

$$\rho'(\gamma) = A^{-1}\rho(\gamma)A \quad (\forall \gamma \in \Gamma)$$

- Easy to see that $ho \sim
 ho' \Longrightarrow t(
 ho) = t(
 ho')$
- ρ ∈ R(Γ) is *reducible* if there exists a line in C² invariant under ρ. Otherwise, *irreducible*.

Proposition [Cor 1.2.2, Lem 1.4.2, CS1]

- ρ is reducible if and only if $tr(\rho(\gamma)) = 2$ ($\forall \gamma \in [\Gamma, \Gamma]$).
- The set of reducible representations in $R(\Gamma)$ has the form $t^{-1}(V)$ for some closed algebraic subset of $X(\Gamma)$.

Proposition [Prop 1.5.2, CS1]

Let $\rho, \rho' \in R(\Gamma)$ s.t. $t(\rho) = t(\rho')$. If ρ is irreducible, then ρ and ρ' are conjugate.

For an irreducible component $R_0 \subset R(\Gamma)$ containing an irreducible representation, $X_0 = t(R_0)$ is a closed set [Prop 1.4.4, CS1]. We have dim $R_0 = \dim X_0 + 3$.

irr.

3. Discrete valuations and algebraic curves K: a field, $K^* = K \setminus \{0\}$

 $v: K^* \to \mathbb{Z} \text{ is called a$ *discrete valuation* $if, for } \forall x, y \in K^*$ (i) v(xy) = v(x) + v(y),
(ii) $v(x+y) \ge \min\{v(x), v(y)\}$.

(Assume that v is surjective. Define $v(0) = +\infty$.)

Example

 $K = \mathbb{C}(t)$: 有理関数体, $p \in \mathbb{C}$ (also for $p = \infty$ in $\mathbb{C}P^1$) $f(t) \in \mathbb{C}(t)$ is written by using $n \in \mathbb{Z}$, $c_i \in \mathbb{C}$, $c_0 \neq 0$ as

$$f(t) = (t-p)^n (c_0 + c_1(t-p) + \cdots + c_k(t-p)^k)$$

Then, $v_p(f) = n$ is a discrete valuation.

Example

$$\begin{split} & \mathcal{K} = \mathbb{Q}, \quad p : \text{ prime} \\ & r \in \mathbb{Q} \text{ is written as } r = p^n(c_0 + c_1p + \dots + c_kp^k) \\ & (n \in \mathbb{Z}, \ 0 \leq c_i \leq p-1, \ c_0 \neq 0) \\ & \text{Then } v_p(r) = n \text{ is a discrete valuation.} \end{split}$$

3. Discrete valuations and algebraic curves (i) v(xy) = v(x) + v(y), (ii) $v(x + y) \ge \min\{v(x), v(y)\}$.

Easy facts

(1)
$$v(\pm 1) = 0$$
. (Thus $v(-x) = v(x)$.)
(2) If $v(x) < v(y)$, $v(x + y) = v(x)$.

Proof.

(1) By
$$v(1) = v(\pm 1 \cdot \pm 1) = v(\pm 1) + v(\pm 1)$$
.
(2) $v(x + y) \ge \min(v(x), v(y)) = v(x)$.
Conversely, $v(x) = v((x + y) - y) \ge \min(v(x + y), v(y))$.
If $v(x + y) > v(y)$, then $v(x) \ge v(y)$ contradicts
 $v(x) < v(y)$. Thus $\min(v(x + y), v(y)) = v(x + y)$,
therefore $v(x) \ge v(x + y)$.

 $\mathcal{O} = \{x \in K \mid v(x) \ge 0\}$ is a PID, and a local ring (i.e. having a unique proper maximal ideal). \mathcal{O} is called the discrete valuation ring (DVR).

Actually, if we take $\pi \in K$ s.t. $v(\pi) = 1$, any non-trivial ideal has the form (π^n) , thus (π) is the unique maximal ideal.

3. Discrete valuations and algebraic curves

Let X, Y be (affine, projective, or quasi-projective) variety over \mathbb{C} . Then the following are equivalent [Cor I.4.5, Har].

- X and Y are isomorphic on some non-empty Zariski open subsets.
- The function fields $\mathbb{C}(X)$, $\mathbb{C}(Y)$ are isomorphic.

In these cases, X and Y are called *birationally equivalent*.

A 1-dimensional variety C (possibly singular) gives the function field $K = \mathbb{C}(C)$, which is a fin. gen. field of trans. degree 1.

Conversely, for a given fin. gen. field K/\mathbb{C} of trans. degree 1, the set of DVRs on K satisfying $v(\mathbb{C}^*) = 0$ has a structure of a smooth projective curve [§1.6, Har]. When applied to $K = \mathbb{C}(C)$, this gives a smooth projective curve \tilde{C} birat. equiv. to C.

[Har] Hartshorne, "Algebraic Geometry", GTM 52.

(Live

3. Discrete valuations and algebraic curves

Summary

For an algebraic curve C over \mathbb{C} , we can construct a smooth projective curve \widetilde{C} birationally equivalent to C as the set of DVRs of $\mathbb{C}(C)/\mathbb{C}$.

Concisely,

 $\{ \text{ points on } \widetilde{C} \} \stackrel{1:1}{\longleftrightarrow} \{ \text{ discrete valuations on } \mathbb{C}(C)/\mathbb{C} \}$

A point on \widetilde{C} s.t. the birational map $\widetilde{C} \to C$ is not defined is called an *ideal point*.

The valuation v associated to an ideal point of C can be characterized by $\exists f \in \mathbb{C}[C](\subset \mathbb{C}(C))$ s.t. v(f) < 0.

 $\chi(n)$

4. Tree actions and incompressible surfaces Let *T* be a tree (a connected graph with no cycle).

M: a 3-mfd, \widetilde{M} : the universal cover of M.

 $\pi_1(M) \curvearrowright T$: an action without inverting edges

Consider a $\pi_1(M)$ -equivariant map $f: \widetilde{M} \to T$.

For each mid point m_e of an edge $e \subset T$, we assume that f is transverse to m_e . Then $\widetilde{S} := f^{-1}(m_e)$ is a surface in \widetilde{M} .

Since f is equivariant, \tilde{S} gives a surface $S \subset M$. In this case, we say that $S \subset M$ is associated with $\pi_1(M) \curvearrowright T$.

If $\pi_1(M)$ acts on T without inverting edges, S is 2-sided.

An action $\pi_1(M) \curvearrowright T$ is called non-trivial if it has no global fixed point of $\pi_1(M)$.

Proposition [Cor 1.3.7, CGLS], [Prop 2.3.1, CS1]

If $\pi_1(M) \curvearrowright T$ is non-trivial, we can deform f so that the associated surface is essential.

4. Tree actions and incompressible surfaces

Proposition [Cor 1.3.7, CGLS], [Prop 2.3.1, CS1]

If $\pi_1(M) \curvearrowright T$ is non-trivial, we can deform f so that the associated surface is essential.

In the beginning of talk, I wrote that the CS theory

constructs an incompressible surface in M from an ideal point.

But, actually,

the CS theory constructs a non-trivial tree action of $\pi_1(M)$.

The tree action (and the *translation length*) is uniquely determined by the ideal point, but the associated essential surface is not uniquely determined.

5. Bass-Serre-Tits theory

 $P \in C \subset X(\Lambda)$

 $\pi_{\mathcal{M}} \cap$

 ${\it K}$: a field, ${\it v}:{\it K}^* o {\Bbb Z}$: valuation

 $\bigcup_{\mathcal{O}} = \{x \in \mathcal{K} \mid v(x) \ge 0\} \quad \text{(discrete valuation ring)}$

Let $\pi \in K$ be an element with $v(\pi) = 1$.

We will construct a tree T associated with these data.

Let $V = K^2$. A <u>lattice</u> in V is a \mathcal{O} -submodule $L \subset V$ which spans V over K.

Two lattices L, L' are equivalent if $\exists \alpha \in K^*$ s.t $L' = \alpha L$.

Bass-Serre tree T

Define a tree T by

Vertices: equivalent classes of lattices $\Lambda = [L]$ Edges: Λ , Λ' are connected by an edge if \exists lattices L, L' s.t.

$$\pi L \subset L' \subset L$$
, $(\Lambda = [L], \Lambda' = [L'])$

5. Bass-Serre-Tits theory

Bass-Serre tree T

Vertices: equivalent classes of lattices $\Lambda = [L]$ Edges: Λ , Λ' are connected by an edge if \exists lattices L, L' s.t.

$$\pi L \subset L' \subset L$$
, $(\Lambda = [L], \Lambda' = [L'])$

Let $k = O/(\pi)$ (called the residue field). The above $L' \subset L$ defines a line $L'/\pi L \subset L/\pi L \cong k^2$. Thus the link of a vertex can be regarded as $P^1(k)$ (the projective line /k).

 SL_2K naturally acts on the tree T. $SL_2\Theta \subset SL_2 \ltimes \Box$

It is easy to see that $SL_2\mathcal{O}$ fixes the lattice $\mathcal{O}^2 \subset \mathcal{K}^2$, thus (fixing the vertex $[\mathcal{O}^2]$.

Moreover, it is known that if a subgroup $G \subset SL_2K$ fixing a vertex of the tree, then G is conjugate into SL_2O by an element of GL_2K .

Further detail: [Se] Serre, "Trees", Springer.

554.02

6. Culler-Shalen's main construction

M: a cpt. ori. 3-mfd with torus boundary

Thus we can regard $a(\gamma), b(\gamma), c(\gamma), d(\gamma) \in \mathbb{C}[R(M)]$. This gives a tautological representation $P : \pi_1 M \to SL_2\mathbb{C}[R(M)]$

$$P(\gamma) = \begin{pmatrix} a(\gamma) & b(\gamma) \\ c(\gamma) & d(\gamma) \end{pmatrix} \in \mathsf{SL}_2\mathbb{C}[R(M)].$$

For any closed subset $D \subset R(M)$, the restriction of the tautological representation gives $P : \pi_1 M \to SL_2\mathbb{C}[D]$.

6. Culler-Shalen's main construction < R(M)X(M) : the character variety JKlo Take a curve $C \subset X(M)$. $\gamma \hookrightarrow P \in C$ We can take an affine curve $D \subset t^{-1}(C) \subset R(M)$ s.t. the restriction $t|_D: D \to C$ is not constant [proof of Prop 1.4.4, $\subset X(/M)$] CS1]. We remark that $\mathbb{C}(D)/\mathbb{C}(C)$ is a finite extension. An ideal point of C gives a valuation v on $\mathbb{C}(C)$, which 0V0 gives a valuation w on the finite extension $\mathbb{C}(D)$. This gives the tree associated with $\mathbb{C}(D)$ and the action $\pi_1(M) \xrightarrow{P} \operatorname{SL}_2\mathbb{C}[D] \subset \operatorname{SL}_2\mathbb{C}(D) \curvearrowright T.$ 60 (*P* : tautological rep.) The Fundamental Theorem [Thm 2.2.1, CS1]

For an affine curve $C \subset X(M)$ and the ideal point p, the associated tree action is non-trivial.

Remark: A non-ideal point of \tilde{C} also gives a tree action, but it has a global fixed point, is not interesting.

6. Culler-Shalen's main construction

$$w \leftrightarrow q \in \widetilde{D} \rightarrow D \subset R(M)$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$v \leftrightarrow p \in \widetilde{C} \rightarrow C \subset X(M)$$

For $\gamma \in \pi_1(M)$, $v(\tau_{\gamma}) \ge 0$ if and only if γ fixes a vertex of T [Thm 2.2.1, CS1], [Prop 1.2.6, CGLS]. In this case, we can deform γ avoiding the associated surface S.

Thus if $\exists \alpha, \beta \in \pi_1(\partial M)$ s.t. $v(\tau_{\alpha}) \ge 0$ and $v(\tau_{\beta}) < 0$, α is a boundary slope.

Moreover, the translation length of $\gamma \in \pi_1(M)$ is given by

$$\min(0,-2w(\tau_{\gamma}))$$

[Prop II.3.15, MS1].

[MS1] Morgan-Shalen. "Valuations, trees, and degenerations of hyperbolic structures. I," Ann. of Math. (2) 120(1984), 401–476.

 $V(\tau_{r}) \ge 0$ $B \in \mathcal{T}_{r}(\partial m)$ $V(\tau_{p}) < 0$

) - 5/2pe

In 1 of [CGLS], the following theorem is proved as an application of the CS theory.

Theorem (CGLS, Thm 1.0.1)

Let *M* be a hyperbolic orientable 3-manifold with one torus boundary. Let α , β be slopes s.t. $\pi_1(M(\alpha))$, $\pi_1(M(\beta))$ are cyclic. If neither α nor β is strict boundary slope then $\Delta(\alpha, \beta) \leq 1$.

A slope ∂M is called a *boundary slope* if it is the boundary of some essential surface. A slope is called a *strict boundary slope* if it is the slope of some non-fiber essential surface.

Remark: The boundary slope detected by CS theory (more generally, detected by a tree action) is a strict boundary slope [CGLS, Prop 1.2.7].

The remaining part of the cyclic surgery theorem is proved in [§2, CGLS] by using different techniques.

M(L): med obtained I)e.h h Subjer PSSEntial instaid SCM (i) in compressible, (i)) not parallel Тъ JM

21 / 41

Theorem (CGLS, Thm 1.0.1)

Let *M* be a hyperbolic orientable 3-manifold with one torus boundary. Let α , β be slopes s.t. $\pi_1(M(\alpha))$, $\pi_1(M(\beta))$ are cyclic. If neither *r* nor *s* is strict boundary slope then $\Delta(\alpha, \beta) \leq 1$.

A hyperbolic structure on M gives a discrete faithful representation $\rho_0 : \pi_1 M \to \mathsf{PSL}_2\mathbb{C} = \mathsf{Isom}^+(\mathbb{H}^3)$, which is irreducible.

There exists a lift $\tilde{\rho_0} : \pi_1 M \to SL_2\mathbb{C}$ of ρ_0 [Prop 3.1.1, CS1]. (Since the obstruction to the lifting is living in $H^2(M; \mathbb{Z}/2\mathbb{Z})$, trivial for knot exteriors.)

2/2-22 J SL2 C J PSL, C

Take an irreducible component $R_0 \subset R(M)$ containing $\tilde{\rho_0}$ and $X_0 = t(R_0)$.

Proposition [Prop 1.1.1, CGLS]

dim $X_0 = 1$. For any non-trivial $\gamma \in \pi_1(\partial M)$, τ_{γ} is non-constant. (Recall $\tau_{\gamma}([\rho]) = \operatorname{tr} \rho(\gamma)$ for $[\rho] \in X_0$.)

dim $X_0 \ge 1$ is rather elementary [Prop 3.2.1, CS1], which is the same line of argument as Theorem 5.6 of Thurston's \checkmark Lecture Notes.

dim $X_0 \leq 1$ is shown in [Prop 2, CS2] using some local rigidity result. The second assertion also follows from [Prop 2, CS2].

[CS2] Culler-Shalen, "Bounded, separating, incompressible surfaces in knot manifolds," Invent., 75(1984), 537-545.

Remark: For the (p, q)-torus knot exterior, $\exists \gamma \in \pi_1(\partial M)$ s.t. τ_{γ} is constant on the component $X_0 \subset X(M)$ containing irreducible characters.

R(m) = $H_{2m}(\pi, M, SL, G)$ PERCRM) Jtlp. t $X_{p} \subset X(M)$ 11 $f(R_{o})$

For $\alpha \in \pi_1(\partial M) \cong H_1(\partial M; \mathbb{Z}) \cong \mathbb{Z}^2$, we consider the trace function $\tau_{\alpha} \in \mathbb{C}[X_0]$. $(\tau_{\alpha}([\rho]) = \operatorname{tr} \rho(\gamma) \text{ for } [\rho] \in X_0$.) Define $f_{\alpha} := \tau_{\alpha}^2 - 4 \in \mathbb{C}[X_0].$ If $f_{\alpha}(\rho) = 0$, then tr $\rho(\alpha) = \pm 2$, thus $\rho(\alpha)$ is conjugate to The former case gives a representation $\pi_1(\mathcal{M}(\alpha)) \to \mathsf{PSL}_2\mathbb{C}.$ $(\mathcal{M}(\alpha): \text{ Dehn filling along } \alpha)$ $f: \mathcal{T}_1 \mathcal{M} \to \mathsf{PSL}_2\mathbb{C}$ If the image is "large", $\pi_1(M(\alpha))$ could not be cyclic So it is important to study zeros of f_{α} for $\alpha \in H_1(\partial M; \mathbb{Z})$. We denote the order of zero of $f \in \mathbb{C}(X_0) = \mathbb{C}(\widetilde{X}_0)$ at $x \in \widetilde{X}_0$ by $Z_x(f)$. (\widetilde{X}_0 : smooth projective model of X_0)

Theorem (CGLS, Thm 1.0.1)

Let α , β be slopes s.t. $\pi_1(M(\alpha))$, $\pi_1(M(\beta))$ are cyclic. If neither α nor β is strict boundary slope then $\Delta(\alpha, \beta) \leq 1$.

The proof divided into the following 2 propositions.

Proposition [Prop 1.1.2, CGLS] 🛛 🖕 🍞

There exists a norm $|| \cdot || : H_1(\partial M; \mathbb{R}) \to \mathbb{R}_{\geq 0}$ s.t.

- For $\alpha \in H_1(\partial M, \mathbb{Z})$, $||\alpha|| = \deg f_{\alpha}$.
- The unit ball is a finite-sided polygon whose vertices are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let $\alpha \in H_1(\partial M; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_1(M(\alpha))$ is cyclic, then for any $x \in \widetilde{X}_0$, we have

 $Z_x(f_\alpha) \leq Z_x(f_\delta) \quad (\forall \delta \in H_1(\partial M; \mathbb{Z}), \, \delta \neq 0).$

7. Cyclic Surgery Theorem Proposition [Prop 1.1.2, CGLS]

There exists a norm $|| \cdot || : H_1(\partial M; \mathbb{R}) \to \mathbb{R}_{\geq 0}$ s.t.

- For $\alpha \in H_1(\partial M, \mathbb{Z})$, $||\alpha|| = \deg f_{\alpha}$.
- The unit ball is a finite-sided polygon whose vertices are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let $\alpha \in H_1(\partial M; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_1(M(\alpha))$ is cyclic, then for any $x \in \widetilde{X}_0$, we have $Z_x(f_\alpha) \leq Z_x(f_\delta) \quad (\forall \delta \in H_1(\partial M; \mathbb{Z}), \ \delta \neq 0).$

Since $\sum_{x \in \widetilde{X}_0} Z_x(f) = \deg f$, we deduce the following.

Corollary [Cor 1.1.4, CGLS]

Let $\alpha \in H_1(\partial M; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_1(M(\alpha))$ is cyclic,

 $||\alpha|| \leq ||\delta|| \quad (\forall \delta \in H_1(\partial M; \mathbb{Z}), \, \delta \neq 0).$

7. Cyclic Surgery Theorem Corollary [Cor 1.1.4, CGLS]

Let $\alpha \in H_1(\partial M; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_1(M(\alpha))$ is cyclic,

 $||\alpha|| \leq ||\delta|| \quad (\forall \delta \in H_1(\partial M; \mathbb{Z}), \, \delta \neq 0).$

Theorem (CGLS, Thm 1.0.1)

Let α , β be slopes s.t. $\pi_1(M(\alpha))$, $\pi_1(M(\beta))$ are cyclic. If neither α nor β is strict boundary slope then $\Delta(\alpha, \beta) \leq 1$.

Corollary to Theorem R^2

Let
$$L := H_1(\partial M; \mathbb{Z}) \cong \mathbb{Z}^2$$
, $V := H_1(\partial M; \mathbb{R}) \cong \mathbb{R}^2$.

Let $m = \min_{0 \neq \delta \in L} ||\delta||$, B the ball of radius m in V w.r.t. $||\cdot||$.

B is a finite sided balanced (B = -B) convex polygon [Prop 1.1.2, CGLS], contains no integral point in the interior by the definition of *m*.

Since Int B is mapped to V/2L injectively, Area $B \le 4$.

7. Cyclic Surgery Theorem Corollary [Cor 1.1.4, CGLS]

Let $\alpha \in H_1(\partial M; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_1(M(\alpha))$ is cyclic,

 $||\alpha|| \leq ||\delta|| \quad (\forall \delta \in H_1(\partial M; \mathbb{Z}), \, \delta \neq 0).$

Theorem (CGLS, Thm 1.0.1)

Let α , β be slopes s.t. $\pi_1(M(\alpha))$, $\pi_1(M(\beta))$ are cyclic. If neither α nor β is strict boundary slope then $\Delta(\alpha, \beta) \leq 1$.

Corollary to Theorem (continued)

By Cor, if γ is not a strict boundary slope and $\pi_1(M(\gamma))$ is cyclic, γ is on the boundary of *B*. Let α , β as in Thm, and *P* the parallelogram spanned by 4 pts $\pm \alpha$, $\pm \beta$

$$\Delta(\alpha,\beta) = \frac{\operatorname{Area} P}{2} \leq \frac{\operatorname{Area} B}{2} \leq 2$$

If $\Delta(\alpha, \beta) = 2$, then P = B, which implies that α and β are vertices of B, thus they are strict boundary slopes.

We have left to show

Proposition [Prop 1.1.2, CGLS]

There exists a norm $|| \cdot || : H_1(\partial M; \mathbb{R}) \to \mathbb{R}_{\geq 0}$ s.t.

- For $\alpha \in H_1(\partial M, \mathbb{Z})$, $||\alpha|| = \deg f_{\alpha}$.
- The unit ball is a finite-sided polygon whose vertices are rational multiple of strict boundary slopes.

Proposition [Prop 1.1.3, CGLS]

Let $\alpha \in H_1(\partial M; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_1(M(\alpha))$ is cyclic, then for any $x \in \widetilde{X}_0$, we have

 $Z_x(f_\alpha) \leq Z_x(f_\delta) \quad (\forall \delta \in H_1(\partial M; \mathbb{Z}), \ \delta \neq 0).$

The norm is called the *Culler-Shalen norm*.

We denote the order of pole of $f \in \mathbb{C}(X_0) = \mathbb{C}(\widetilde{X}_0)$ at $x \in X_0$ by $\prod_x(f)$. We have

$$\deg f = \sum_{x \in \widetilde{X}_0} Z_x(f) = \sum_{x \in \widetilde{X}_0} \Pi_x(f).$$

Furthermore, if f is a regular function on X_0 ($f \in \mathbb{C}[X_0]$),

$$\deg f = \sum_{x \in \widetilde{X}_0} \Pi_x(f) = \sum_{x: \text{ ideal}} \Pi_x(f).$$

Lemma [Lem 1.4.1, CGLS]

For each ideal point $x \in \widetilde{X}_0$, there exists a homomorphism $\phi_{\mathsf{x}}: L \to \mathbb{Z} \text{ s.t.}$ $H_{1}^{\mathsf{H}}(\mathfrak{d}\mathsf{M};\mathfrak{Z}) \underset{\mathfrak{Z}}{\underset{\mathfrak{Z}}{\overset{\mathsf{\Pi}_{x}}{\overset{\mathsf{\Pi}_{x}}{(\alpha) = |\phi_{x}(\alpha)|}}} H_{1}^{\mathsf{H}}(\mathfrak{d}\mathsf{M};\mathfrak{Z}) \underset{\mathfrak{Z}}{\overset{\mathsf{\Pi}_{x}}{\overset{\mathsf{\Pi}_{x}}{(\alpha) = |\phi_{x}(\alpha)|}} H_{1}^{\mathsf{H}}(\mathfrak{d}\mathsf{M};\mathfrak{Z}) \underset{\mathfrak{Z}}{\overset{\mathsf{\Pi}_{x}}{(\alpha) = |\phi_{x}(\alpha)|}} H_{1}^{\mathsf{H}}(\mathfrak{d}\mathsf{M};\mathfrak{Z})} H_{1}^{\mathsf{H}}(\mathfrak{d}\mathsf{M};\mathfrak{Z}) \underset{\mathfrak{Z}}{\overset{\mathsf{\Pi}_{x}}{(\alpha) = |\phi_{x}(\alpha)|}} H_{1}^{\mathsf{H}}(\mathfrak{d}\mathsf{M};\mathfrak{Z})} H_{1}^{\mathsf{H}}(\mathfrak{d}\mathsf{M};\mathfrak{Z})} H_{1}^{\mathsf{H}}(\mathfrak{d}\mathsf{M};\mathfrak{Z}) H_{1}^{\mathsf{H}}(\mathfrak{d}\mathsf{M};\mathfrak{Z})} H_{1}$ We use

Theorem [Thm 1.2.3, CGLS], [Lem II.4.4, MS1]

A valuation v on $\mathbb{C}(X_0)^*$ is extended to a valuation w on $\mathbb{C}(R_0)^*$ s.t. $w|_{\mathbb{C}(X_0)^*} = d \cdot v$ for some $d \in \mathbb{N}$.

For each ideal point $x \in \widetilde{X}_0$, there exists a homomorphism $\phi_x : L \to \mathbb{Z}$ s.t.

$$\Pi_x(f_\alpha) = |\phi_x(\alpha)|.$$

Proof. Fix a basis $\alpha_1, \alpha_2 \in L$. If $\rho(\alpha_i) \sim \begin{pmatrix} \lambda_i & * \\ 0 & \lambda_i^{-1} \end{pmatrix}$, $f_{\alpha_i} = (\lambda_i + \lambda_i^{-1})^2 - 4 = (\lambda_i - \lambda_i^{-1})^2$.

In general, for $f \neq 0, \pm 1$, we have

$$-\min(0, v(f - f^{-1})) = |v(f)|. \left(\begin{array}{c} \text{Eg. if } v(f) > 0, v(f^{-1}) = -v(f) < 0, \\ \text{thus } v(f - f^{-1}) = -v(f) = -|v(f)|. \end{array} \right) \quad \text{Hes}$$
Thus, for $\alpha = \alpha_1^p \alpha_2^q \in L$,
$$\nabla (f - f^{-1}) = -V(f) = -V(f)$$

$$\begin{aligned} &= -\min(0, v((\lambda_1^p \lambda_2^q - \lambda_1^{-p} \lambda_2^{-q})^2)) \\ &= -\min(0, v((\lambda_1^p \lambda_2^q - \lambda_1^{-p} \lambda_2^{-q})^2)) \\ &= -\frac{2}{d}\min(0, w(\lambda_1^p \lambda_2^q - \lambda_1^{-p} \lambda_2^{-q})) \\ &= \frac{2}{d}|w(\lambda_1^p \lambda_2^q)| = \frac{2}{d}|p w(\lambda_1) + q w(\lambda_2)|. \end{aligned}$$
So set $\phi_x(\alpha) = \frac{2}{d}|p w(\lambda_1) + q w(\lambda_2)|.$

31 / 41

v(f) > 0

7. Cyclic Surgery Theorem Lemma [Lem 1.4.1, CGLS] For each ideal point $x \in \widetilde{X}_0$, there exists a homomorphism $\phi_x : L \to \mathbb{Z}$ s.t.

 $\Pi_x(f_\alpha) = |\phi_x(\alpha)|.$

Proposition [Prop 1.1.2, CGLS]

There exists a norm $|| \cdot || : H_1(\partial M; \mathbb{R}) \to \mathbb{R}_{\geq 0}$ s.t.

- For $\alpha \in H_1(\partial M, \mathbb{Z})$, $||\alpha|| = \deg f_{\alpha}$.
- The unit ball is a finite-sided polygon whose vertices are rational multiple of strict boundary slopes.

Sketch. Define

$$||\alpha|| = \sum_{\mathsf{x: ideal}} |\phi_\mathsf{x}(\alpha)| \quad (\alpha \in V).$$

It is easy to see $|| \cdot ||$ is a semi-norm. Since f_{α} is non-const. for $0 \neq \alpha \in L$, this is a norm. The first assertion follows from Lem. Since a vertex of the unit ball is on the line $\phi_x = 0$ for some x, thus the 2nd assertion follows.

 $(x,y) \in \mathbb{R}^2$ |Y| + |Y| = ||(x, y)||6,1/ (1,0)

We have left to show

Proposition [Prop 1.1.3, CGLS]

Let $\alpha \in H_1(\partial M; \mathbb{Z})$ be a primitive, not a strict boundary slope. If $\pi_1(M(\alpha))$ is cyclic, then for any $x \in \widetilde{X}_0$, we have

 $Z_x(f_\alpha) \leq Z_x(f_\delta) \quad (\forall \delta \in H_1(\partial M; \mathbb{Z}), \ \delta \neq 0).$

This is further divided into two cases:

- x is non-ideal [§1.5, p.254~260, CGLS], and
- x is ideal [§1.6, p.260~264, CGLS].

(By the way, $1.1 \sim 1.4$ (p.242 ~ 254).)

We show

 $0 \neq \exists \delta \in L, Z_x(f_\alpha) > Z_x(f_\delta) \Longrightarrow \pi_1(M(\alpha))$ is not cyclic.

in [CGLS]

"ordinary pt"

 $0 \neq \exists \delta \in L, Z_x(f_\alpha) > Z_x(f_\delta) \Longrightarrow \pi_1(M(\alpha))$ is not cyclic.

• If x is non-ideal, find $\rho \in R_0$ s.t.

(i) $t(\rho) = x$, (ii) $\rho(\pi_1(M))$ is non-cyclic in $PSL_2\mathbb{C}$, (iii) $\rho(\alpha) = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. (Recall $t : R(M) \to X(M)$.) So $\pi_1(M(\alpha))$ is non-cyclic.

• If x is ideal, let S be the associated essential surface. Since $Z_x(f_\alpha) > 0$, τ_α is finite at x. Thus α is boundary slope of S, or S is closed.

But we assume that α is not a strict boundary slope, ${\it S}$ is closed.

We show that S is incompressible in $M(\alpha)$. (Technical part of §1.6.) In particular, $\pi_1(M(\alpha)) (\supset \pi_1(S))$ is non-cyclic.

M J S closal J M (L) J S dosed

Technical points in §1.5 of CGLS

We have to take the normalizations X_0^{ν} , R_0^{ν} of X_0 , R_0 (taking integral closure of the coordinate rings) to avoid singularities.

$$\begin{array}{ccc} R_0^{\nu} \xrightarrow{\nu} R_0 \\ t^{\nu} \psi & \psi t \\ X_0^{\nu} \xrightarrow{\nu} X_0 \end{array}$$

We ignore these technical details.

```
Proposition [Prop 1.5.2, CGLS]
```

```
For x \in X_0^{\nu} (non-ideal point), assume that 0 \neq \exists \delta \in L s.t.

Z_x(f_{\alpha}) > Z_x(f_{\delta}). Then \exists \rho \in R_0 s.t.

(i) t(\rho) = \nu(x),

(ii) \rho(\pi_1(M)) is non-cyclic in PSL_2\mathbb{C},

(iii) \rho(\alpha) = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.

\chi_{0}^{\nu} \xrightarrow{\nu} \chi_{0}^{\nu} \xrightarrow{\nu} \chi_{0}^{\nu} \xrightarrow{\tau} \chi_{0}^{\nu} \xrightarrow{\tau} \chi_{0}^{\nu} \xrightarrow{\tau} \chi_{0}^{\nu} \xrightarrow{\tau} \chi_{0}^{\nu}
```

H'(JW: 5)=55

Proposition [Prop 1.5.2, CGLS]

For $x \in X_0^{\nu}$ (non-ideal point), assume that $0 \neq \exists \delta \in L$ s.t. $Z_x(f_{\alpha}) > Z_x(f_{\delta})$. Then $\exists \rho \in R_0$ s.t. $(\not\downarrow^{\nu})^{-1}$ $(\not\downarrow) \subset R_0^{\nu} \xrightarrow{\nu} R_0 \neq f$ (i) $t(\rho) = \nu(x)$, (ii) $\rho(\pi_1(M))$ is non-cyclic in $PSL_2\mathbb{C}$, (iii) $\rho(\alpha) = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

It is shown that

- (i) t^{ν} is surjective [Prop 1.5.6, CGLS].
- (ii) ∃ dense U ⊂ (t^ν)⁻¹(x) s.t. ρ ∈ ν(U) has non-cyclic image [Prop 1.5.5, CGLS].

(iii) For $\tilde{\rho} \in (t^{\nu})^{-1}(x)$, $\nu(\tilde{\rho})(\alpha) = \pm 1$ [Prop 1.5.4, CGLS].

(i) is technical. We give sketches of (ii) and (iii).

(ii) Since dim $X_0^{\nu} = 1$, dim $R_0^{\nu} = \dim X_0^{\nu} + 3 = 4$. Thus each component of $(t^{\nu})^{-1}(x)$ has dimension at least 3.

On the other hand, let

$$Z = \{ \rho \in t^{-1}(\nu(x)) \mid \rho(\pi_1(M)) \text{ is cyclic in } \mathsf{PSL}_2\mathbb{C} \} \subset R_0,$$

and $\mathcal{N} = \{\ker \rho \mid \rho \in Z\}$. Since the set of finite index subgroups of $\pi_1(M)$ is countable, \mathcal{N} is countable. For each $N \in \mathcal{N}$, let $Y_N := \{\rho \in t^{-1}(x) \mid \rho(N) = \{1\}\}$. We have $Z \subset \bigcup_{N \in \mathcal{N}} Y_N$, and dim $Y_N \leq 2$ since $\rho \in Y_N$ is (almost) determined by the image of the cyclic generator.

Set
$$U = \underbrace{(t^{\nu})^{-1}(x)}_{\dim \geq 3} - \underbrace{\nu^{-1}(\bigcup_{N \in \mathcal{N}} Y_N)}_{\dim \leq 2}.$$

(iii) Since
$$Z_x(f_\alpha) > Z_x(f_\delta) \ge 0$$
, $0 = f_\alpha(x) = \operatorname{tr} \rho(\alpha)^2 - 4$,
so $\operatorname{tr} \rho(\alpha) = \pm 2$. Thus $\rho(\alpha) \sim \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\pm \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
Using the assumption, we can show that the former holds.

Proposition [Prop 1.5.4, CGLS]

Let
$$0 \neq \alpha, \delta \in H_1(\partial M; \mathbb{Z})$$
 and $x \in X_0^{\nu}$.
Assume $Z_x(f_{\alpha}) > Z_x(f_{\delta}) \ge 0$ (thus tr $\rho(\alpha) = \pm 2$).
 $\widetilde{\rho} \in (t^{\nu})^{-1}(x) \Longrightarrow \nu(\widetilde{\rho})(\alpha) = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

We use the following lemma.

Lemma [Lem 1.5.7, CGLS] K: a filed, $v: K^* \to \mathbb{Z}$: a discrete valuation $\mathcal{O} = \{f \in K \mid v(f) \ge 0\}$: the DVR. $\mathcal{M} = \{f \in K \mid v(f) > 0\}$: its maximal ideal For $A, B \in SL_2(\mathcal{O})$ s.t. [A, B] = 0, $v((\operatorname{tr} A)^2 - 4) > v((\operatorname{tr} B)^2 - 4) \Longrightarrow A \equiv \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod \mathcal{M}$.

7. Cvclic Surgery Theorem Lemma [Lem 1.5.7, CGLS]

For
$$A, B \in SL_2(\mathcal{O})$$
 s.t. $[A, B] = 0$,
 $v((\operatorname{tr} A)^2 - 4) > v((\operatorname{tr} B)^2 - 4) \Longrightarrow A \equiv \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod \mathcal{M}$

Sketch.

(After taking a quadratic field extension) A and B are simultaneously upper triangulable:

$$A = \begin{pmatrix} a & x \\ 0 & a^{-1} \end{pmatrix}, B = \begin{pmatrix} b & y \\ 0 & b^{-1} \end{pmatrix} (x, y, a^{\pm 1}, b^{\pm 1} \in \mathcal{O}).$$

Since $(\text{tr } A)^2 - 4 = (a + a^{-1})^2 - 4 = (a - a^{-1})^2,$
 $\nu((\text{tr } A)^2 - 4) = 2 \cdot \nu(a - a^{-1}).$
Thus $\nu((\text{tr } A)^2 - 4) > \nu((\text{tr } B)^2 - 4)$ implies
 $\nu(a - a^{-1}) > \nu(b - b^{-1}).$ Thus $\nu(a - a^{-1}) > 0$, which
mplies $a \equiv \pm 1 \mod \mathcal{M}$.

Since A and B commute, $(b - b^{-1})x = (a - a^{-1})y$, thus $v(x) \ge v(x) - v(y) = v(a - a^{-1}) - v(b - b^{-1}) > 0.$ u(x) > 0 means $x \in M$, i.e. $x \equiv 0 \mod M$.

Proposition [Prop 1.5.4, CGLS]

Let $0 \neq \alpha, \delta \in H_1(\partial M; \mathbb{Z})$ and $x \in X_0^{\nu}$. Assume $Z_x(f_{\alpha}) > Z_x(f_{\delta}) \ge 0$ (thus tr $\rho(\alpha) = \pm 2$). W (Let $\mathcal{O} \subset \mathfrak{f}^{-1}(\alpha) \subset \mathcal{R}_{\mathcal{O}}$ $\widetilde{\rho} \in (t^{\nu})^{-1}(x) \Longrightarrow \nu(\widetilde{\rho})(\alpha) = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Sketch. For each component $Q \subset (t^{\nu})^{-1}(x) \subset R_0^{\nu}$, since $Q \subset R_0^{\nu}$ is a codimension 1 subvariety, Q determines a discrete valuation w on $F = \mathbb{C}(R_0^{\nu}) = \mathbb{C}(R_0)$. Let v be the valuation corresponding to $x = t^{\nu}(Q) \in X_0^{\nu}$. Then $\exists d \in \mathbb{N}$ s.t. $w|_{\mathbb{C}(X_0)^*} = d \cdot v$. Since $x \in X_0^{\nu}$ is non-ideal, we have

$$Z_{x}(f_{\alpha}) \leq Z_{x}(f_{\alpha}) = v(f_{\alpha}) = \frac{1}{d}w((\operatorname{tr} P(\alpha))^{2} - 4)$$

where $P : \pi_1(M) \to SL_2(\mathbb{C}(R_0))$ is the tautological rep. Likewise for δ . Thus the assumption implies $w((\operatorname{tr} P(\alpha))^2 - 4) > w((\operatorname{tr} P(\delta))^2 - 4)$, thus by Lem 1.5.7, $P(\alpha) = \pm I \mod \mathcal{M}_w$ This means that, for $\rho \in \nu(Q)$, $\rho(\alpha) = \pm I$. $t(a) \subset$

U

 \mathcal{X}

References

[CS1] Culler-Shalen, "Varieties of group representations and splittings of 3-manifolds," Ann. of Math., 117(1983), 109-146.

[CS2] Culler-Shalen, "Bounded, separating, incompressible surfaces in knot manifolds," Invent. math., 75(1984), 537-545.

[CGLS] Culler-Gordon-Luecke-Shalen, "Dehn surgery on knots," Ann. of Math., 125(1987), 237-300.

[Har] Hartshorne, "Algebraic Geometry", GTM 52.

[MS1] Morgan-Shalen. "Valuations, trees, and degenerations of hyperbolic structures. I," Ann. of Math. (2) 120(1984), 401–476.

[Se] Serre, "Trees", Springer.