1 1変数関数の微分

この節と次の節の内容は完全に理解する事を要求はしない。しかし、微積分を理論的に支えている基礎に「実数論・極限論」がある事は理解しておいてほしい。

1.1 実数の基本性質

なので、 $(1 \div 3) \times 3 = 1$ より

が「分かる」。

もう少し無限小数について議論しよう。実数が在った時その無限小数表示というものが考えられる。例えば $\alpha=\sqrt{2}$ という実数が与えられると $1.41421356\cdots$ というような表示が考えられる。 実際的には小数点以下すべての数を具体的に決定する事は難しいかもしれないが,表示を考える事はできる。無限小数表示で大切な点は**すでに無限個の数字が並んでいる**事である。

ここで逆を考えてみよう。「無限小数は必ず一つの実数を表すのか?」という疑問である。今この事実を認める事にして最初に例として挙げた $0.\dot{9}$ を考えてみよう。今これは無限小数であるから或る実数を表している。これを α とおく事にしよう。 α が 1 以下である事は認めてもよいであろう。さて α が 1 より小さいとしてみる。この時 0.9, 0.99, 0.999, ... と考えていくといつかは α を越える。つまり, $1-\alpha>\frac{1}{10^n}$ とすると $\alpha<0.9\cdots9<0.\dot{9}=\alpha$ なので矛盾。よって $\alpha=1$ 。

この議論は「無限小数とは何か」ということをきちんと定義していないので「数学的」とは言えないが感じはつかめるかもしれない。この事をきちんと定義すれは実数の連続性を定義できる。しかし通常は別の公理を採用して議論する。

講義で実数を扱う時色々なやり方が有る。実数の基本性質の講義での取り上げ方を幾つか上げると,

- (1) 厳密・厳密—自然数 \to 整数 \to 有理数と構成し、有理数から実数を作っていく。そして、「この作ったものはこれこれの性質をもつ。」として、基本性質を証明する。
- (2) 基本性質は成立するものと認める。あとはきちんと証明していく。
- (3) 基本性質は成立するものと認める。あともあまりきちんと証明しない。

(4) そういう問題にはふれない(さわらぬ神にたたりなし)。

などが考えられる。高校までは最後の立場であった。この講義では最後から2番目の立場でやる事にする。実数(「無限概念」)を捉らえようとした人間の営みの一端を理解してくれたらと思う。 実数の基本的性質に関してまとめておこう。

(1) 演算

- 1) 和 \cdots a+b が定義されている
 - 1. (a+b)+c=a+(b+c) (結合法則)。
 - 2. 0 という実数が存在して、すべての実数 a に対し a+0=0+a=a(零の存在)。
 - 3. 各実数 a に対し a + a' = a' + a = 0 となる実数 a' が存在する。この a' を -a と 書く (加法の逆元の存在)。
 - 4. a + b = b + a (交換法則)。
- 2) 積 $\cdots a \cdot b$ が定義されている。
 - 1. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (結合法則)。
 - 2. 1という実数が存在して、すべての実数 a に対し $a \cdot 1 = 1 \cdot a = a$ (単位元の存在)。
 - 3. 各実数 $a(\neq 0)$ に対し $a \cdot a'' = a'' \cdot a = 1$ となる実数 a'' が存在する。この a'' を 1/a と書く (乗法の逆元の存在)。
 - $4. a \cdot b = b \cdot a$ (交換法則)。
- 3) 分配法則
 - 1. $a \cdot (b+c) = a \cdot b + a \cdot c_{\circ}$

(2) 順序

- 1) 順序
 - 1. 任意の実数 a,b に対し $a \le b$ または $b \le a$ が成立する。
 - $2. \ a \leq a_{\circ}$

 - 4. $a \leq b$, $b \leq a$ $\Leftrightarrow b$ if a = b.
- 2) 和・積
 - 1. $a \leq b$ $\Leftrightarrow b \mid a + c \leq b + c$.
 - $a \ge 0, b \ge 0$ $a \ge 0$ $a \ge 0$
- (3) 連続性 \cdots この性質が有理数と実数を区別するものになっている。色々な人が別々に実数の基礎付けを試みたので幾つか違った定義が有る。ここでは定義なしに同値な公理をあげておく $^{(1)}$ 。
 - 任意の無限小数表示に対しそれで表現される実数が存在する。
 - 空集合でない上に有界な実数の部分集合は最小上界 (上限) を持つ (ワイエルシュトラスの公理)。

⁽¹⁾ 興味のある人は最初にあげた本などを参考にする事。

- 閉区間 $I_n = [a_n, b_n]$ (n = 1, ...) がすべての n に対し $[a_n, b_n] \supseteq [a_{n+1}, b_{n+1}]$ を満たすとき, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ である (カントールの公理)。
- 実数全体を空でない2つの部分集合 A, B に分け,A の任意の元は B の任意の元より小さいとき,A に最大元があるか B に最小元があるかのいずれかが起こる (デデキントの公理)。

1.2 極限概念

まず「数列の極限」について考える。高校時代は『nが限りなく大きくなる時、 a_n は限りなくAに近づく。』とき、数列 a_n は Aに収束するといい、この A を極限値と呼んでいた。しかしこの直観的定義はよく考えると分らない。この定義が数学的に明確なものならその対偶をとっても同値なはずである。同値な命題は『 a_n が限りなくAに近づくかない時、n は限りなく大きくならない。』となるがこれは明確であろうか。イントロでも触れたが微積分は始った時にはその理論的基礎付けは十分明確ではなかった。この極限概念に関しても特に 18 世紀には混乱が起こった。1 例として $1-1+1-1+\cdots$ という級数を考えてみよう。幾つかの考え方を紹介しよう。

(1)
$$\alpha = (1-1) + (1-1) + \cdots \ \ \ \ \ \ \ \alpha = 0$$

(2)
$$\alpha = 1 + (-1 + 1) + (-1 + 1) + \cdots \quad \sharp \, \emptyset, \quad \alpha = 1$$

(3)
$$\alpha = 1 - (1 - 1 + 1 - 1 + \cdots) = 1 - \alpha \ \sharp \ \emptyset, \ \alpha = 1/2$$

以上の議論により、0=1=1/2

この様ななかで極限概念を明確にしたのはコーシー (Cauchy) であった。彼は概ね以下の様に考えた。『限りなく近づく』という概念は『距離を幾らでも小さくできる』事、もう少し数学的にはっきりさせると『与えられたどんな正の数より距離を小さくできる』事と考えた。

そして『限りなく大きくなる』という概念は『n をいくらでも大きくする』事、もう少し数学的にはっきりさせると『或る大きな自然数よりも大きくする』事と考えた。

定義 1.1 以上から数列 a_n が A に収束するとは

任意の正の実数 ε に対しある自然数 N が存在して N より大きい任意の自然数 n に対し $|a_n-A|<\varepsilon$ が成立する。

とコーシーは定義した。我々も厳密に取り扱う時にはこれを採用する。このとき

$$\lim_{n \to \infty} a_n = A \quad \sharp \, \hbar \, \sharp \, \dagger \, \atop a_n \longrightarrow A \qquad (n \longrightarrow \infty)$$

と表す。

言い方を変えると次の様にも言える。「任意の正数 ε に対して a_n と A との距離が ε 以上である n は有限個しかない。」

次の定理は当たり前に見えるかもしれないが極限の定義を厳密にする事なしに「証明」できなかったということは注意する必要がある。

定理 1.2 [極限の性質]

- (1) 和・定数倍・積・商の極限
 - 1) $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$
 - 2) $\lim_{n\to\infty} \alpha a_n = \alpha \lim_{n\to\infty} a_n$
 - 3) $\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$
 - 4) $\lim_{n\to\infty} b_n \neq 0$ の時, $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$
- (2) 不等式 $a_n \leq b_n \ (n=1,2,\ldots)$ の時, $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$
- (3) はさみうちの定理 $a_n \leq b_n \leq c_n \ (n=1,2,\ldots)$ の時 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = A$ であれば $\lim_{n\to\infty} b_n$ も収束して極限値は A。

数列の収束では次の定理が理論的にも実際的にも重要である。

定理 1.3 有界な単調数列は収束する。

理論的な面でいうとこの定理は「実数の連続性」と同値である。この定理の実際上での良い点は「収束するかどうか」という事と「極限値を求める事」を分けられる点である。この講義では取り上げないが、難しい形の数列の極限を求める場合、2つを分けて考える事が有効な場合がある。

次に「関数の極限」を考えよう。直観的には「f(x) において x を限りなく a に近づける時 f(x) は A に限りなく近づく」事だが,これもコーシーによって以下の様に考えられ定義された。『限りなく近づく』という概念は数列の場合と同じ様に『与えられたどんな正の数より距離を小さくできる』事と考えた。

また『限りなく近づける』という概念は『距離を小さくする』事, もう少し数学的にはっきりさせると『距離をある値より小さくする』事と考えた。

定義 1.4 以上から関数 f(x) において x を限りなく a に近づけた時 A に収束するとは

任意の正の実数 ε に対しある正の実数 δ が存在して $0<|x-a|<\delta$ となる任意の実数 x に対し $|f(x)-A|<\varepsilon$ が成立する。

とコーシーは定義した。我々も厳密に取り扱う時にはこれを採用する。このとき

$$\lim_{x \to a} f(x) = A$$
 または $f(x) \longrightarrow A$ $(x \longrightarrow a)$

と表す。

 $x \to \infty$ も同様に定義している。

任意の正の実数 ε に対しある実数 L が存在して L より大きい任意の実数 x に対し $|f(x)-A|<\varepsilon$ が成立する。

6

このとき

$$\lim_{x \to \infty} f(x) = A \quad \sharp \, \text{tit}$$

$$f(x) \longrightarrow A \quad (x \longrightarrow \infty)$$

と表す。

この論法を ε - δ 論法という (安易な命名法だ)。

数列の極限に関する定理 1.2 と同様に関数に対しても次を示す事ができる。

定理 1.5 (1) 和・定数倍・積・商の極限

1)
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2)
$$\lim_{x \to a} \alpha f(x) = \alpha \lim_{x \to a} f(x)$$

3)
$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

4)
$$B \neq 0$$
 の時, $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$

- (2) 不等式 $f(x) \leq g(x)$ $(n=1,2,\ldots)$ の時, $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$
- (3) はさみうちの定理 $f(x) \leq g(x) \leq h(x) \; (n=1,2,\ldots)$ の時 $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A$ であれば $\lim_{x \to a} g(x)$ も収束して極限値は A。

ここでイントロのとき紹介した微積分学に対するバークレーの批判に対し, ε - δ 論法の立場で答えておこう。 $y=f(x)=x^2$ の導関数を求める事に対する批判であった。 $A=\frac{f(x+h)-f(x)}{h}=\frac{2xh+h^2}{h}$ において h で割算して A=2x+h としておきながら, $\lim_{h\to 0}2x+h=2x$ とするのはおかしいとの批判であった。

コーシーの立場からは次の様な議論になる。任意の $\varepsilon>0$ に対し $\delta>0$ を適当に見つけなくてはならないが,今 $\delta=\varepsilon$ としよう。このとき $0<|h|<\delta$ となる任意の h に対し $|A-2x|=|h|<\delta=\varepsilon$ となるので,定義より $\lim_{t\to 0}A=2x$ となる。この立場では h=0 となる事はない。

同透かしの様な回答に感じるかもしれない。しかし極限における「等号」がきちんと定義されて るのがこの議論のよい点であろう。バークレーの議論ではきちんと定義されていない極限における 「等号」を通常の「等号」と同じように扱っていた。