演習問題 *2.1 次の D に対し ∂D を求めよ。

(1)
$$D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \}$$

(2)
$$D = \left\{ (x, y) \in \mathbb{R}^2 \middle| 0 < x < 1, -2 < y < \sin \frac{1}{x} \right\}$$

(3)
$$D = \{ (x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le 1, x \in \mathbb{Q}, y \in \mathbb{Q} \}$$

D の内点全体の集合を I , 外点全体の集合を X とする。O=(0,0) を原点とする。

 $(1) \quad \partial D = \left\{\,(x,y) \in \mathbb{R}^2 \,\middle|\, x^2 + y^2 = 1\,\right\} \text{ であることを示す。そのために } I = \left\{\,(x,y) \in \mathbb{R}^2 \,\middle|\, x^2 + y^2 < 1\,\right\} \text{ , } X = \left\{\,(x,y) \in \mathbb{R}^2 \,\middle|\, x^2 + y^2 > 1\,\right\} \text{ を示せばよい。}$

 $J=\left\{\,(x,y)\in\mathbb{R}^2\;\middle|\;x^2+y^2<1\,
ight\}$ とおき,P=(x,y) を J の任意の点とする。このとき $x^2+y^2<1$ なので $\varepsilon=1-\sqrt{x^2+y^2}$ とおくと $\varepsilon>0$ である。 $U_{\varepsilon}(P)=\left\{\,Q\in\mathbb{R}^2\;\middle|\;d(Q,P)<\varepsilon\,
ight\}$ とおく。Q=(x',y') を $U_{\varepsilon}(P)$ の任意の点とする

$$x'^2 + y'^2 = d(Q, O) \le d(Q, P) + d(P, O) < \varepsilon + \sqrt{x^2 + y^2} < 1$$

となるので $U_{\varepsilon}(P) \subset D$ が成立する。よって P は D の内点であり, $P \in I$ が成立する。

逆に P=(x,y) を D の内点 (即ち $P\in I$) とすると , ある正の実数 ε が存在して $U_{\varepsilon}(P)\subseteq D$ となる。 P=O=(0,0) のときは $P\in J$ なので $d(P,O)=\sqrt{x^2+y^2}\neq 0$ とする。

このとき

$$Q = (x', y') = \left(x + \frac{\varepsilon x}{2\sqrt{x^2 + y^2}}, y + \frac{\varepsilon y}{2\sqrt{x^2 + y^2}}\right)$$

とおくと $d(P,Q)=rac{arepsilon}{2}<arepsilon$ より $Q\in U_{arepsilon}(P)\subseteq D$ である。

$$\begin{split} d(Q,O) &= \sqrt{x'^2 + y'^2} = \sqrt{\left(x + \frac{\varepsilon x}{2\sqrt{x^2 + y^2}}\right)^2 + \left(y + \frac{\varepsilon y}{2\sqrt{x^2 + y^2}}\right)^2} \\ &= \sqrt{x^2 \left(1 + \frac{\varepsilon}{2\sqrt{x^2 + y^2}}\right)^2 + y^2 \left(1 + \frac{\varepsilon}{2\sqrt{x^2 + y^2}}\right)^2} \\ &= \sqrt{(x^2 + y^2) \left(1 + \frac{\varepsilon}{2\sqrt{x^2 + y^2}}\right)^2} = \sqrt{x^2 + y^2} \left(1 + \frac{\varepsilon}{2\sqrt{x^2 + y^2}}\right) \\ &= d(P,O) \left(1 + \frac{\varepsilon}{2\sqrt{x^2 + y^2}}\right) \end{split}$$

 $d(Q,O) \le 1$ より d(P,O) < 1 となり , $P \in J$ となる。よって I = J が示された。

 $K=\left\{\,(x,y)\in\mathbb{R}^2\ \middle|\ x^2+y^2>1\,
ight\}$ とおく。P=(x,y) を K の任意の点とする。d(P,O)>1 なので $\varepsilon=d(P,O)-1$ とおくと $\varepsilon>0$ である。 $U_{\varepsilon}(P)\cap D=\emptyset$ であることを示せば,P は D の外点になり, $K\subseteq X$ が示される。Q=(x',y') を $U_{\varepsilon}(P)$ の任意の点とする。 $d(P,Q)<\varepsilon$ なので

$$1 + \varepsilon = d(P, O) \le d(P, Q) + d(Q, O) < \varepsilon + d(Q, O)$$

より 1 < d(Q, O) となる。よって $U_{\varepsilon}(P) \cap D = \emptyset$ である。

逆に P を D の外点とする。ある正の実数 ε が存在して $U_{\varepsilon}(P)\cap D=\emptyset$ となっている。このとき

$$Q = (x', y') = \left(x - \frac{\varepsilon x}{2\sqrt{x^2 + y^2}}, y - \frac{\varepsilon y}{2\sqrt{x^2 + y^2}}\right)$$

とおくと $d(P,Q)=rac{arepsilon}{2}<arepsilon$ より $Q\in U_{arepsilon}(P)\cap D=\emptyset$ である。

$$\begin{split} d(Q,O) &= \sqrt{x'^2 + y'^2} = \sqrt{\left(x - \frac{\varepsilon x}{2\sqrt{x^2 + y^2}}\right)^2 + \left(y - \frac{\varepsilon y}{2\sqrt{x^2 + y^2}}\right)^2} \\ &= \sqrt{x^2 \left(1 - \frac{\varepsilon}{2\sqrt{x^2 + y^2}}\right)^2 + y^2 \left(1 - \frac{\varepsilon}{2\sqrt{x^2 + y^2}}\right)^2} \\ &= \sqrt{(x^2 + y^2) \left(1 - \frac{\varepsilon}{2\sqrt{x^2 + y^2}}\right)^2} = \sqrt{x^2 + y^2} \left(1 - \frac{\varepsilon}{2\sqrt{x^2 + y^2}}\right) \\ &= d(P,O) \left(1 - \frac{\varepsilon}{2\sqrt{x^2 + y^2}}\right) \end{split}$$

d(Q,O)>1 より d(P,O)>1 となり , $P\in K$ となる。よって X=K が示された。

$$(2) \quad L_1 = \left\{ (x,y) \in \mathbb{R}^2 \,\middle|\, 0 < x < 1, y = \sin\frac{1}{x} \right\}, L_2 = \left\{ (x,y) \in \mathbb{R}^2 \,\middle|\, x = 1, -2 < y \le \sin 1 \right\}, \\ L_3 = \left\{ (x,y) \in \mathbb{R}^2 \,\middle|\, 0 < x \le 1, y = -2 \right\}, L_4 = \left\{ (x,y) \in \mathbb{R}^2 \,\middle|\, x = 0, -2 \le y \le 1 \right\}, \\ E = L_1 \cup L_2 \cup L_3 \cup L_4 \ \text{とおくとき}, \ \partial D = E \ \text{であることを示す。}$$

最初に D の点は D の内点であることを示す。 $P=(x_0,y_0)\in D$ とする。

$$arepsilon_1 = y_0 - (-2), arepsilon_2 = x_0, arepsilon_3 = 1 - x_0, arepsilon_4 = \inf\left\{d\left((x,\sin\frac{1}{x}),(x_0,y_0)
ight) \middle| 0 < x \leq 1
ight\}$$
 とおく。 n を $\frac{1}{\left(2n-\frac{1}{2}\right)\pi} < x_0$ を満たす自然数とすると

$$\varepsilon_4 = \inf \left\{ d\left((x, \sin\frac{1}{x}), (x_0, y_0) \right) \mid \frac{1}{\left(2n - \frac{1}{2} \right) \pi} \le x \le 1 \right\}$$

が成立するが,最大値定理より

$$\varepsilon_4 = \min \left\{ d\left((x, \sin \frac{1}{x}), (x_0, y_0) \right) \mid \frac{1}{\left(2n - \frac{1}{2} \right)\pi} \le x \le 1 \right\}$$

が成立するので $\varepsilon_4 > 0$ である。

$$\varepsilon = \min \{ \varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4 \}$$

とおくと

$$U_{\varepsilon}(P) \subseteq D$$

が成立するので P は D の内点である。逆に P を D の内点とすると , ある正の実数 ε が存在して $U_{\varepsilon}(P)\subseteq D$ となるので $P\in D$ である。よって I=D である。

 $K=\mathbb{R}^2-D-E$ とおくとき,X=K を示す。 $P=(x_0,y_0)\in K$ とすると (1) $y_0<-2$,または (2) $x_0<0$,または (3) $x_0>1$,または (4) $0< x_0\leq 1$ かつ $y_0>\sin\frac{1}{x_0}$,(5) $x_0=0$ かつ $y_0>1$ が成立している。

 $(1) \ \text{のときは} \ \varepsilon = |y_0 - (-2)| \ \text{とおくと} \ U_\varepsilon(P) \cap D = \emptyset \ \text{となっている}. \ (2) \ \text{のときは} \ \varepsilon = |x_0 - 0| \ \text{とおくと} \ U_\varepsilon(P) \cap D = \emptyset \ \text{となっている}. \ (3) \ \text{のときは} \ \varepsilon = |x_0 - 1| \ \text{とおくと} \ U_\varepsilon(P) \cap D = \emptyset \ \text{となっている}. \ (3) \ \text{Outside} \ \varepsilon = |x_0 - 1| \ \text{Constant} \ \mathcal{C} \ \mathcal{C}$

 $(4) \ \mathfrak{O} \ \mathsf{ときは} \ \varepsilon = \inf \left\{ \left. d \left((x, \sin \frac{1}{x}), (x_0, y_0) \right) \ \right| \ 0 < x \leq 1 \right\} \ \mathsf{とおく}, \ n \ \mathsf{を} \ \frac{1}{\left(2n + \frac{1}{2} \right) \pi} < x_0 \ \mathsf{を} \right\}$ 話たす自然数とすると

$$\varepsilon = \inf \left\{ d\left((x, \sin \frac{1}{x}), (x_0, y_0) \right) \mid \frac{1}{\left(2n + \frac{1}{2}\right)\pi} \le x \le 1 \right\}$$

が成立するが,最大値定理より

$$\varepsilon = \min \left\{ d\left((x, \sin \frac{1}{x}), (x_0, y_0) \right) \mid \frac{1}{\left(2n + \frac{1}{2} \right) \pi} \le x \le 1 \right\}$$

が成立するので $\varepsilon > 0$ である。

$$U_{\varepsilon}(P) \cap D = \emptyset$$

が成立するので P は D の外点である。

(5) のときは $y_0 - 1 = \varepsilon$ とおくと $U_{\varepsilon}(P) \cap D = \emptyset$ となるので外点である。

逆に D の外点は K に含まれることを示せば X=K が分かる。D は D の内点なので外点ではない。よって L_1,L_2,L_3,L_4 が外点でないことを示せばよい。 ε を任意の正の実数とする。

$$P=(x_0,y_0)\in L_1$$
 とする $x=x_0,y=\max\left\{y_0-rac{arepsilon}{2},-rac{3}{2}
ight\}$ とおく。 $Q=(x,y)$ とすると $Q=(x,y)\in D$ となる。

$$d(P,Q) \le \frac{\varepsilon}{2} < \varepsilon$$

なので $Q \in U_{\varepsilon}(P)$ となり, よって P は外点でない。

 $P=(x_0,y_0)\in L_2 \text{ とする。} y_0=\sin 1 \text{ のときは } x=\max\left\{x_0-\frac{\varepsilon}{\sqrt{2}},\frac{1}{2}\right\}, y=\max\left\{y_0-\frac{\varepsilon}{\sqrt{2}},-\frac{3}{2}\right\}$ とおく。 $y_0\neq\sin 1$ のときは $x=\max\left\{x_0-\frac{\varepsilon}{2},\frac{1}{2}\right\}, y=y_0$ とおく。 $Q=(x,y)\in D$ となる。

$$d(P,Q) = \frac{\varepsilon}{2} < \varepsilon$$

なので $Q \in U_{\varepsilon}(P)$ となり, よって P は外点でない。

 $P=(x_0,y_0)\in L_3$ とする。 $x_0=1$ のときは $x=\max\left\{x_0-rac{arepsilon}{\sqrt{2}},rac{1}{2}
ight\}, y=\min\left\{y_0+rac{arepsilon}{\sqrt{2}},-rac{3}{2}
ight\}$ とおく。 $x_0
eq 1$ のときは $x=x_0,y=\min\left\{y_0+rac{arepsilon}{2},-rac{3}{2}
ight\}$ とおく。Q=(x,y) とすると Q=(x,y) とすると Q=(x,y) とする。

$$d(P,Q) \le \frac{\varepsilon}{2} < \varepsilon$$

なので $Q \in U_{\varepsilon}(P)$ となり, よって P は外点でない。

 $P=(x_0,y_0)\in L_4$ とする。 $y_0=-2$ のときは $x=\max\left\{x_0+rac{\varepsilon}{\sqrt{2}},rac{1}{2}
ight\}, y=\min\left\{y_0+rac{\varepsilon}{\sqrt{2}},-rac{3}{2}
ight\}$ とおく。 $-2< y_0<-1$ のときは $x=\min\left\{x_0+rac{\varepsilon}{2},rac{1}{2}
ight\}, y=y_0$ とおく。 $y_0=-1$ のときは $x=\min\left\{x_0+rac{\varepsilon}{2},rac{1}{2}
ight\}, y=y_0$ とおく。 $y_0=-1$ のときは $x=\min\left\{x_0+rac{\varepsilon}{2},rac{1}{2}
ight\}, y=\min\left\{y_0-rac{\varepsilon}{2},-rac{3}{2}
ight\}$ とおく。 $-1< y_0<1$ のとき次のような数列 $\{\alpha_n\}$ が存在する; $\{\alpha_n\}$ は(1)0 に収束する単調減少数列であり,(2) $(\alpha_n,y_0)\in D$ を満たす。この ことを示すのは最後にまわして,これを使って議論を進める。 α_n は 0 に収束するので, $0<\alpha_n<\varepsilon$ となる n が存在する。このとき $x=\alpha_n,y=y_0$ とおく。 $y_0=1$ のとき $y_1=\max\left\{y_0-rac{\varepsilon}{2},rac{1}{2}
ight\}$ とすると, $-1< y_1<1$ なので y_1 に対し $\{\alpha_n\}$ と同じ性質をもつ数列 $\{\beta_n\}$ が存在する。この β_n に対し $0<\beta_n<rac{\varepsilon}{2}$ を満たす自然数 n が存在する。このとき $x=\beta_n,y=y_1$ とする。Q=(x,y) とすると $Q=(x,y)\in D$ となる。

$$d(P,Q) \le \frac{\varepsilon}{2} < \varepsilon$$

なので $Q \in U_{\varepsilon}(P)$ となり, よって P は外点でない。

以上により $\partial D = E$ である。

残っている (1) 0 に収束する単調減少数列であり , (2) $(\alpha_n,y_0)\in D$ を満たす数列 $\{\,\alpha_n\,\}$ の存在を示す。

$$A = \left\{ x \in \mathbb{R} \mid \sin \frac{1}{x} = y_0, 0 < x < 1 \right\}$$

とする。 $\frac{1}{x}=X$ とおくと $A=\left\{\left.\frac{1}{X}\in\mathbb{R}\;\middle|\;\sin X=y_0,X>0\right\}$ と表されるので A は空集合ではない。 $\sin\frac{1}{x}=y_0$ のとき

$$\sin\frac{1}{x} = \sin\left(\frac{1}{x} + 2n\pi\right) = \sin\left(\frac{1 + 2n\pi x}{x}\right) = \sin\left(\frac{1}{\frac{1 + 2n\pi x}{x}}\right)$$

となるので $x \in A$ ならば $\dfrac{1}{\dfrac{1+2n\pi x}{x}} \in A$ である。言い換えると A の中にはいくらでも 0 に近い

元が存在する。よって A の元すべてを大きい順に

$$\beta_1 > \beta_2 > \beta_3 > \cdots$$

と番号付ける。

$$K_n = \{ (x, y_0) \mid \beta_{n+1} < x < \beta_n \}$$

とおくと,任意の自然数 n に対し $K_{2n-1}\subseteq D$ が成立するが,または任意の自然数 n に対し $K_{2n}\subseteq D$ が成立する。前者の場合は $\beta_{2n}<\alpha_n<\beta_{2n-1}$,後者の場合は $\beta_{2n+1}<\alpha_n<\beta_{2n}$ を満たすように α_n を決めると求めるものが得られる。

(3) $E=\left\{\,(x,y)\in\mathbb{R}^2\,\middle|\,0\leq x\leq 1,0\leq y\leq 1\,\right\}$ とおくとき $\partial D=E$ を示す。「普通」の集合 D の場合 ∂D は 1 次元的であるが,この例では ∂D が 2 次元的になっている。E の任意の点 P が境界点であることを示す。そのために任意の正の実数 ε に対し $U_\varepsilon(P)$ は D に含まれる点も D に含まれない点も含むことを示す。

実数に対しいくらでも近くに有理数が存在する。きちんと書くと

$$\forall x \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists q \in \mathbb{Q} \qquad |x - q| < \varepsilon$$

が成立する。これを用いると

$$\forall P = (x, y) \in \mathbb{R}^2 \ \forall \varepsilon > 0 \ \exists Q = (x', y') \in \mathbb{Q}^2 \qquad d(P, Q) < \varepsilon$$

の成立が分かる。

また実数に対しいくらでも近くに無理数が存在する。きちんと書くと

$$\forall x \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists q \in \mathbb{R} - \mathbb{Q} \qquad |x - q| < \varepsilon$$

が成立する。これを用いると

$$\forall P = (x, y) \in \mathbb{R}^2 \ \forall \varepsilon > 0 \ \exists Q = (x', y') \in (\mathbb{R} - \mathbb{Q}) \times (\mathbb{R} - \mathbb{Q}) \qquad d(P, Q) < \varepsilon$$

の成立が分かる。この 2 つを用いると $P=(x,y)\in E$ と任意の正の実数 ε に対し

$$\exists Q = (x', y') \in D$$
 $d(P, Q) < \varepsilon$, $\exists R = (x'', y'') \notin D$ $d(P, R) < \varepsilon$

が示される。

演習問題 **2.2 定理 2.4 を証明せよ。

$$P=(x,y), P_0=(a,b)$$
 とする。 $\lim_{P\to P_0}f(P)=A$ の定義は

$$\forall \varepsilon (>0) \in \mathbb{R} \ \exists \delta (>0) \in \mathbb{R} \ \forall P \ 0 < d(P, P_0) < \delta \implies |f(P) - A| < \varepsilon$$

が成立することである。 ここで $d(P,P_0)=\sqrt{(x-a)^2+(y-b)^2}$ である。 $\lim_{P\to P_0}f(P)=A,\lim_{P\to P_0}f(P)=B$ とする。

(1) 1) arepsilon>0 を任意の正数とする。ある正数 δ_1 が存在して , 任意の P に対し

$$0 < d(P, P_0) < \delta_1 \implies |f(P) - A| < \frac{\varepsilon}{2}$$

が成立する。またある正数 δ_2 が存在して, 任意の P に対し

$$0 < d(P, P_0) < \delta_2 \implies |g(P) - B| < \frac{\varepsilon}{2}$$

が成立する。このとき $\delta = \min \left\{ \delta_1, \delta_2 \right\}$ とおく。 $0 < d(P, P_0) < \delta$ のとき

$$|f(P) + g(P) - (A+B)| = |(f(P) - A) + (g(P) - B)|$$

$$\leq |f(P) - A| + |g(P) - B|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

となる。

 $2)\;k=0$ の場合は kf(P) は恒等的に 0 なので成立している。よって $k\neq 0$ とする。任意の正数 ε に対して上の様な δ が存在するので ,特に $\frac{\varepsilon}{|k|}$ に対し $\delta>0$ が存在して $0< d(P,P_0)<\delta$ ならば $|f(P)-A|<\frac{\varepsilon}{|k|}$ を満たす。このとき

$$|kf(P) - kA| = |k(f(P) - A)| = |k| \cdot |f(P) - A| < |k| \frac{\varepsilon}{|k|} = \varepsilon$$

となるので証明された。

3) 1 に対しある正数 δ_0 が存在し,任意の P に対し

$$0 < d(P, P_0) < \delta_0 \implies |f(P) - A| < 1$$

が成立している。このとき $M=\max\{|A+1|,|A-1|\}$ とおくと $0< d(P,P_0)<\delta_0$ のとき |f(P)|< M が成立する。

最初に B=0 の場合を考える。 ε を任意の正数とする。ある正数 δ_1 が存在して任意の P に対し $0< d(P,P_0)<\delta_1 \implies |g(P)|< \frac{\varepsilon}{M}$ が成立する。 $\delta=\min\big\{\delta_0,\delta_1\big\}$ とおくと,任意の P に対し $0< d(P,P_0)<\delta$ のとき

$$|f(P)g(P) - AB| = |f(P)g(P)| = |f(P)| \cdot |g(P)|$$

$$< M \frac{\varepsilon}{M} = \varepsilon$$

が成立する。この場合は証明された。

よって $B \neq 0$ とする。 ε を任意の正数とする。ある正数 δ_1 が存在して任意の P に対し

$$0 < d(P, P_0) < \delta_1 \implies |f(P) - A| < \frac{\varepsilon}{2|B|}$$

が成立する。またある正数 δ_2 が存在して任意の P に対し

$$0 < d(P, P_0) < \delta_2 \implies |g(P) - B| < \frac{\varepsilon}{2M}$$

が成立する。 $\delta = \min \{ \delta_0, \delta_1, \delta_1 \}$ とおく。 $0 < d(P, P_0) < \delta$ となる P に対し

$$\begin{split} |f(P)g(P) - AB| &= |f(P)g(P) - f(P)B + f(P)B - AB| \\ &\leq |f(P)g(P) - f(P)B| + |f(P)B - AB| \\ &= |f(P)| \cdot |g(P) - B| + |f(P) - A| \cdot |B| \\ &< M \frac{\varepsilon}{2M} + \frac{\varepsilon}{2|B|} |B| = \varepsilon \end{split}$$

となり、この場合も成立する。

4) B ≠ 0 のとき

$$\lim_{P \to P_0} \frac{1}{g(P)} = \frac{1}{B}$$

を示せば,3)と組み合わせて4)が証明される。

arepsilon として $\dfrac{|B|}{2}$ をとると,正数 δ_1 が存在して, $0 < d(P,P_0) < \delta_1$ のとき,

$$|g(P) - B| < \frac{|B|}{2}$$

が成立する。このとき $|g(P)|>rac{|B|}{2}$ が成立する。

任意の ε に対して,g(P) は B に収束するので,ある正数 δ_2 が存在して, $0 < d(P,P_0) < \delta_2$ となる任意の P に対し

$$|g(P) - B| < \frac{|B|^2}{2}\varepsilon$$

が成立する。このとき $\delta = \min \left\{ \delta_1, \delta_2 \right\}$ とおくと $0 < d(P, P_0) < \delta$ となる任意の P に対し

$$\left| \frac{1}{g(P)} - \frac{1}{B} \right| = \left| \frac{B - g(P)}{g(P)B} \right| = \frac{|B - g(P)|}{|g(P)| \cdot |B|}$$

$$< \frac{2|B - g(P)|}{|B|^2} < \varepsilon$$

が成立する。

(2) 結論が成立しないと仮定すると,A>B が成立している。 $\varepsilon=\frac{A-B}{2}$ とおくと $\varepsilon>0$ なので $\delta_1>0$ が存在して

$$0 < d(P, P_0) < \delta_1 \implies |f(P) - A| < \varepsilon$$

が成立する。結論の式は

$$\begin{split} |f(P) - A| < \varepsilon &\implies -\varepsilon < f(P) - A < \varepsilon \\ &\implies A - \varepsilon < f(P) < A + \varepsilon \\ &\implies A - \frac{A - B}{2} < f(P) < A + \frac{A - B}{2} \\ &\implies \frac{A + B}{2} < f(P) < A + \frac{A - B}{2} \end{split}$$

と変形できる。このとき $\frac{A+B}{2} < f(P)$ が成立している。 また $\delta_2 > 0$ が存在して

$$0 < d(P, P_0) < \delta_2 \implies |g(P) - B| < \varepsilon$$

が成立する。結論の式は

$$\begin{split} |g(P) - B| < \varepsilon &\implies -\varepsilon < g(P) - B < \varepsilon \\ &\implies B - \varepsilon < g(P) < B + \varepsilon \\ &\implies B - \frac{A - B}{2} < g(P) < B + \frac{A - B}{2} \\ &\implies B - \frac{A - B}{2} < g(P) < \frac{A + B}{2} \end{split}$$

と変形できる。このとき $g(P)<\frac{A+B}{2}$ が成立している。 $\delta=\min\left\{\,\delta_1,\delta_2\,
ight\}$ とおくと $0< d(P,P_0)<\delta$ となる P に対し

$$g(P) < \frac{a+B}{2} < f(P)$$

が成立する。これは矛盾、よって結論が正しいことが示される。

(3) 任意の正数 ε に対し, ある δ_1 が存在して

$$0 < d(P, P_0) < \delta_1 \implies |f(P) - A| < \varepsilon$$

が成立する。またある正数 δ_2 が存在して

$$0 < d(P, P_0) < \delta_2 \implies |h(P) - A| < \varepsilon$$

が成立する。 $\delta = \min \{ \delta_1, \delta_2 \}$ とおくと P が $0 < d(P, P_0) < \delta$ を満たすとき

$$A - \varepsilon < f(P) \le g(P) \le h(P) < A + \varepsilon$$

が成立するので |g(P)-A|<arepsilon が成立する。 よって $\lim_{P o P_0}g(P)=A$ である。

演習問題 2.3 次の極限値が存在するかどうかを調べ,存在するときは極限値を求めよ。

(1)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2+2}{x+y-1}$$

(2)
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$

(1)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2 + 2}{x + y - 1}$$
(3)
$$\lim_{(x,y)\to(1,1)} \frac{(x-1)^3 + (y-1)^3}{(x-1)^2 + (y-1)^2}$$

(4)
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+xy+y^2}$$

(5)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x^2+xy+y^2}$$

(1) 分母の極限は 0 ではないので

$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2+2}{x+y-1} = \frac{\lim_{(x,y)\to(0,0)} (x^2+y^2+2)}{\lim_{(x,y)\to(0,0)} (x+y-1)} = \frac{2}{-1} = -2$$

(2) $x=r\cos\theta,y=r\sin\theta$ とおくと $(x,y)\to(0,0)$ と $r\to0$ は同じである。ただし θ は任意に変 化可能である。

$$\frac{x^3 + y^3}{x^2 + y^2} = \frac{r^3 \cos^3 \theta + r^3 \sin^3 \theta}{r^2 \cos^2 \theta + r^2 \sin^2 \theta} = \frac{r^3 \left(\cos^3 \theta + \sin^3 \theta\right)}{r^2} = r \left(\cos^3 \theta + \sin^3 \theta\right)$$

となる。 $|\cos \theta| \le 1, |\sin \theta| \le 1$ より

$$\left| \frac{x^3 + y^3}{x^2 + y^2} \right| \le r \left| \cos^3 \theta + \sin^3 \theta \right| \le r \left(\left| \cos^3 \theta \right| + \left| \sin^3 \theta \right| \right) \le 2r$$

よって $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2} = 0$ である。

(3) $x=1+r\cos\theta,y=1+r\sin\theta$ とおくと $(x,y)\to(1,1)$ と $r\to0$ は同じである。

$$\frac{(x-1)^3 + (y-1)^3}{(x-1)^2 + (y-1)^2} = \frac{r^3 \cos^3 \theta + r^3 \sin^3 \theta}{r^2 \cos^2 \theta + r^2 \sin^2 \theta} = r(\cos^3 \theta + \sin^3 \theta)$$

となるので(2)と同様に

$$\lim_{(x,y)\to(1,1)}\frac{(x-1)^3+(y-1)^3}{(x-1)^2+(y-1)^2}=0$$

となる。

(4) $x = r\cos\theta, y = r\sin\theta$ とおく。

$$\frac{x^3+y^3}{x^2+xy+y^2} = \frac{r^3\cos^3\theta + r^3\sin^3\theta}{r^2\cos^2\theta + r^2\cos\theta\sin\theta + r^2\sin^2\theta} = \frac{r\cos^3\theta + r\sin^3\theta}{\cos^2\theta + \cos\theta\sin\theta + \sin^2\theta}$$

分子は(2)と同様に

$$|r\cos^3\theta + r\sin^3\theta| \le 2r$$

となる。分母は

$$\cos^2\theta + \cos\theta\sin\theta + \sin^2\theta = 1 + \frac{1}{2}\sin 2\theta$$

とできるので $-1 \le \sin 2\theta \le 1$ より

$$\frac{1}{2} \le \cos^2 \theta + \cos \theta \sin \theta + \sin^2 \theta \le \frac{3}{2}$$

これより

$$0 < \frac{1}{\cos^2 \theta + \cos \theta \sin \theta + \sin^2 \theta} \le 2$$

が成立する。よって

$$\left| \frac{x^3 + y^3}{x^2 + xy + y^2} \right| \le 4r$$

となるので極限値は0である。

(5) $x = r\cos\theta, y = r\sin\theta$ とおく。

$$\frac{x^2+y^2}{x^2+xy+y^2} = \frac{r^2\cos^2\theta + r^2\sin^2\theta}{r^2\cos^2\theta + r^2\cos\theta\sin\theta + r^2\sin^2\theta} = \frac{1}{\cos^2\theta + \cos\theta\sin\theta + \sin^2\theta}$$

heta=0 として r o 0 とすると極限値は 1 であり , $heta=\frac{\pi}{4}$ として r o 0 とすると極限値は $\frac{2}{3}$ である。よって $\lim_{(x,y) o(0,0)}rac{x^2+y^2}{x^2+xy+y^2}$ は存在しない。

演習問題 **2.4 定理 2.8 を証明せよ。

D を有界閉領域とし, $f:D \longrightarrow \mathbb{R}$ を連続な関数とする。1 変数の証明と同様に最初に f が有界であることを示す。そのために f が有界でないと仮定して矛盾を導く。任意の自然数 n に対し D の点 $P_n=(x_n,y_n)$ で $f(P_n)>n$ となる点が存在する。 $A=\{P_n\mid n\in \mathbb{N}\}$ と置く。収束する部分数列を以下の様に選ぶ。ここで長方形領域に対し次の記法を定義する。

$$R(a, b, c, d) = \{ (x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d \}$$

D は有界なのである長方形領域 R(a,b,c,d) で $D\subseteq R(a,b,c,d)$ となるものが存在する。 $a_1=a,b_1=b,c_1=c,d_1=d,\alpha(1)=1$ とする。 $e_1=rac{a_1+b_1}{2},f_1=rac{c_1+d_1}{2}$ と置き,R(a,b,c,d) を 4 つの長方形領域

$$R(a_1, e_1, c_1, f_1), R(a_1, e_1, f_1, d_1), R(e_1, b_1, c_1, f_1), R(e_1, b_1, f_1, d_1)$$

に分けると、4 つのどれかは A の点を無限個含んでいる。無限個含んでいるものを選び、その頂点を a_2,b_2,c_2,d_2 とする。例えば $R(a_1,e_1,c_1,f_1)$ が選ばれたときは $a_2=a_1,b_2=e_1,c_2=c_1,d_2=f_1$ とする。また $R(a_2,b_2,c_2,d_2)$ に含まれる D の点で $n>\alpha(1)$ となるものが存在するので、その点を $P_{\alpha(2)}$ とする。この操作を続けることにより点列 $\left\{P_{\alpha(n)}\right\}$ が定まる。 a_n,c_n は上に有界な単調増加数列であり、 b_n,d_n は下に有界な単調減少数列である。

$$a_n \le x_{\alpha(n)} \le b_n, \qquad c_n \le y_{\alpha(n)} \le d_n$$

であり,

$$b_n - a_n = \frac{1}{2^{n-1}}(b-a), \qquad d_n - c_n = \frac{1}{2^{n-1}}(d-c)$$

なので $x_{\alpha(n)},y_{\alpha(n)}$ は収束する。よって $P_0=\lim_{n\to\infty}P_{\alpha(n)}$ とおくと,D が閉集合ということから $P_0\in D$ が分かる。どうしてかというと, $\forall \varepsilon>0$ に対し $d(P_{\alpha(n)},P_0)<\varepsilon$ となる点 $P_{\alpha(n)}$ が存在するので, P_0 は D の外点ではない。よって P_0 は D の内点か境界点である。内点ならば $P_0\in D$ であるし,境界点ならば,閉集合ということから $\partial D\subseteq D$ となるので,やはり $P_0\in D$ である。 f は連続なので

$$\lim_{n \to \infty} f(P_{\alpha(n)}) = f(\lim_{n \to \infty} P_{\alpha(n)}) = f(P_0)$$

となるが, $f(P_{\alpha(n)})>\alpha(n)\geq n$ なので $\lim_{n\to\infty}f(P_{\alpha(n)})=\infty$ となる。これは矛盾なので,最初の「有界でない」という仮定が正しくない。よって有界が証明された。

 $X=\{f(P)\,|\,P\in D\}$ とおくと X は有界なので上限 $M=\sup X$ が存在する。 f(P)=M となる点 P が存在すれば P は最大値を与えるので, f(P)=M となる点 P が存在しないとする。 このとき $g(P)=\frac{1}{M-f(P)}$ は D で定義される連続関数であるが上に有界でない。これは示したことに矛盾するので, f(P)=M となる点 P は存在する。これが最大値を与える。

演習問題 2.5 上の関数が原点において連続でない事を示せ。また原点における偏導関数を求め,原点において偏微分可能であることを確認せよ。

z=f(x,y) が原点において連続であるとは $\lim_{(x,y)\to(0,0)}f(x,y)=f(0,0)$ が成立することである。原点で連続でないことを示すには,この極限が存在しないか,存在しても $\lim_{(x,y)\to(0,0)}f(x,y)=f(0,0)$ でないことを示せばよい。

 $x=r\cos\theta,y=r\sin\theta$ とおいて極座標で考える。 $(x,y)\to(0,0)$ と $r\to0$ は同値である。 $f(x,y)=rac{r\cos heta r\sin heta}{r^2\cos^2 heta+r^2\sin^2 heta}=rac{r^2\cos heta\sin heta}{r^2}=\cos heta\sin heta$ となるので極限値は heta に依存する。

たとえば $\theta=0$ のときは 0 であるが $\theta=\frac{\pi}{4}$ のときは $\frac{1}{2}$ である。2 変数の極限の定義よりこれは収束しない。よって f(x,y) は (0,0) で連続ではない。偏導関数は

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h0}{h^2 + 0^2} - 0}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{0k}{h^2 + k^2} - 0 = \lim_{k \to 0} \frac{0}{k} = 0$$

演習問題 2.6 f(x,y) が (a,b) で全微分可能のとき f(x,y) は (a,b) で偏微分可能であり, $A=f(a,b), B=\frac{\partial f}{\partial x}(a,b), C=\frac{\partial f}{\partial y}(a,b)$ となることを示せ。

$$f(a+h,b+k) = A + Bh + Ck + \varepsilon(h,k)\sqrt{h^2 + k^2}$$

において $(h,k) \to (0,0)$ とすると f(a,b) = A が得られる。 f(a+h,b+k) に k=0 を代入すると ,

$$f(a+h,b) = f(a,b) + Bh + \varepsilon(h,0)\sqrt{h^2 + 0^2}$$

となる。

$$\begin{split} \frac{\partial f}{\partial x}(a,b) &= \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} = \lim_{h \to 0} \frac{Bh + \varepsilon(h,0)\sqrt{h^2 + 0^2}}{h} \\ &= \lim_{h \to 0} \left(B + \varepsilon(h,0)\frac{|h|}{h}\right) = B \end{split}$$

f は x に関して偏微分可能であり, $f_x(a,b)=B$ となる。 f(a+h,b+k) に h=0 を代入すると,

$$f(a, b + k) = f(a, b) + Ck + \varepsilon(0, k)\sqrt{0^2 + k^2}$$

となる。

$$\frac{\partial f}{\partial y}(a,b) = \lim_{k \to 0} \frac{f(a,b+k) - f(a,b)}{k} = \lim_{k \to 0} \frac{Ck + \varepsilon(0,k)\sqrt{0^2 + k^2}}{k}$$
$$= \lim_{k \to 0} \left(C + \varepsilon(0,k)\frac{|k|}{k}\right) = C$$

f は y に関して偏微分可能であり , $f_y(a,b)=C$ となる。

演習問題 *2.7 定理 2.11 を証明せよ。

 f_x が連続であるとする。

$$f(a+h,b+k) - f(a,b) = f(a+h,b+k) - f(a,b+k) + f(a,b+k) - f(a,b)$$

と変形して 1 変数の結果を使う。 $\varepsilon_1(h,k)=\frac{f(a+h,b+k)-f(a,b+k)}{h}-f_x(a,b+k)$ とおくと $\lim_{h\to 0}\varepsilon_1(h,k)=0$ であり, $\varepsilon_1(k)=\frac{f(a,b+k)-f(a,b)}{k}-f_y(a,b)$ とおくと $\lim_{k\to 0}\varepsilon_1(k)=0$ である。

また f_x は連続なので $\delta(k)=f_x(a,b+k)-f_x(a,b)$ とおくと $\lim_{k\to 0}\delta(k)=0$ である。このとき

$$\varepsilon(h,k) = \frac{f(a+h,b+k) - f(a,b) - f_x(a,b)h - f_y(a,b)k}{\sqrt{h^2 + k^2}}$$

$$= \frac{f_x(a,b+k)h + \varepsilon_1(h,k)h + f_y(a,b)k + \varepsilon_1(k)k - f_x(a,b)h - f_y(a,b)k}{\sqrt{h^2 + k^2}}$$

$$= \frac{f_x(a,b)h + \delta(k)h + \varepsilon_1(h,k)h + \varepsilon_1(k)k - f_x(a,b)h}{\sqrt{h^2 + k^2}}$$

$$= \frac{\delta(k)h + \varepsilon_1(h,k)h + \varepsilon_1(k)k}{\sqrt{h^2 + k^2}}$$

が成立する。

$$\frac{|h|}{\sqrt{h^2 + k^2}} \le 1, \qquad \frac{|k|}{\sqrt{h^2 + k^2}} \le 1$$

が成立するので

$$\begin{split} |\varepsilon(h,k)| &\leq \left| \frac{\delta(k)h}{\sqrt{h^2 + k^2}} \right| + \left| \frac{\varepsilon_1(h,k)h}{\sqrt{h^2 + k^2}} \right| + \left| \frac{\varepsilon_1(k)k}{\sqrt{h^2 + k^2}} \right| \\ &\leq |\delta(k)| \left| \frac{h}{\sqrt{h^2 + k^2}} \right| + |\varepsilon_1(h,k)| \left| \frac{h}{\sqrt{h^2 + k^2}} \right| + |\varepsilon_1(k)| \left| \frac{k}{\sqrt{h^2 + k^2}} \right| \\ &\leq |\delta(k)| + |\varepsilon_1(h,k)| + |\varepsilon_1(k)| \end{split}$$

となり $\varepsilon(h,k) \to 0$ が示される。

演習問題 2.8 演習問題 2.5 の関数は原点で全微分可能でない事を示せ。

f(x,y) が (a,b) で全微分可能であることの定義は

$$\varepsilon(h,k) = \frac{f(a+h,b+k) - f(a,b) - \frac{\partial f}{\partial x}(a,b)h - \frac{\partial f}{\partial y}(a,b)k}{\sqrt{h^2 + k^2}}$$

とおくとき $\lim_{(h,k) o(0,0)}arepsilon(h,k)=0$ が成立することである。

$$(x,y) = (0,0)$$
 のとき

$$\varepsilon(h,k) = \frac{f(0+h,0+k) - f(0,0) - \frac{\partial f}{\partial x}(0,0)h - \frac{\partial f}{\partial y}(0,0)k}{\sqrt{h^2 + k^2}}$$
$$= \frac{\frac{hk}{h^2 + k^2} - 0 - 0h - 0k}{\sqrt{h^2 + k^2}} = \frac{hk}{(h^2 + k^2)\sqrt{h^2 + k^2}}$$

となる。 $h = r\cos\theta, k = r\sin\theta$ とおくと

$$\varepsilon(h,k) = \frac{r\cos\theta r\sin\theta}{\left((r\cos\theta)^2 + (r\sin\theta)^2\right)\sqrt{(r\cos\theta)^2 + (r\sin\theta)^2}} = \frac{\cos\theta\sin\theta}{r}$$

となる。(h,k) o (0,0) と r o 0 は同値なので $\lim_{(h,k) o (0,0)} arepsilon(h,k) = \lim_{r o 0} rac{\cos \theta \sin \theta}{r}$ となる。これは収束しないので f は (0,0) において全微分可能ではない。

全微分可能な関数は連続であるので,そのことを使った別解もある。まずある点で全微分可能な関数はその点で連続であることを示す。 z=f(x,y) が (a,b) で全微分可能のとき

$$\varepsilon(h,k) = \frac{f(a+h,b+k) - f(a,b) - \frac{\partial f}{\partial x}(a,b)h - \frac{\partial f}{\partial y}(a,b)k}{\sqrt{h^2 + k^2}}$$

とおくとき $\lim_{(h,k) o (0,0)} arepsilon(h,k) = 0$ が成立している。この式は

$$f(a+h,b+k) = f(a,b) + \frac{\partial f}{\partial x}(a,b)h + \frac{\partial f}{\partial y}(a,b)k + \varepsilon(h,k)\sqrt{h^2 + k^2}$$

となる。このとき

$$\lim_{(x,y)\to(a,b)} f(x,y) = \lim_{(h,k)\to(0,0)} f(a+h,b+k) = f(a,b)$$

となるので (a,b) で連続である。

よって問題の関数が (0,0) で全微分可能であるとすると (0,0) で連続である。しかし演習問題 2.5 よりこの関数は (0,0) で連続ではない。よって全微分可能ではない。