1.2 任意と存在

この節では、数学的命題を叙述するとき重要な役割を果たしている「任意」⁽¹⁾と「存在」について取上げる。数学的命題はきちんと述べようとすると「任意」と「存在」という用語が多く用いられる。例えば

関数
$$y = f(x) = x^2 + ax + b$$
 には最小値が存在する

という命題を考えよう。最小値を与える x の値を p とする。最小値というのは「任意の x に対し $f(x) \ge f(p)$ 」が成立することである。上の命題は

 $y=f(x)=x^2+ax+b$ とする。このとき実数 p が存在して、任意の実数 x に対し $f(x) \ge f(p)$ が成立する。

という事を意味している。このようにきちんと表現しようとすると「任意」「存在」は色々な所に顔を出す。

「x は 3 以上である。」という言明のように不定元を含んでいるものは真偽が定まらないので命題ではないが $^{(2)}$, x に具体的なものが代入されて得られる言明は真偽が定まり、命題になる。このようなものを**命題関数** (propositional function) または条件 (condition) といい、不定元が x である事を強調して P(x) のように表す。

P(x) が命題関数の時,「集合 $^{(3)}X$ の任意の元 x に対し P(x) が成立する。」という言明は命題になる。これを通常は

任意の
$$x \in X^{(4)}$$
に対し $P(x)$

と書く。また、「元x が集合X に存在して、命題P(x) が成立する。」 $^{(5)}$ という言明も命題になる。これを通常は

$$(ある)x \in X$$
 が存在して $P(x)$

と書く。

たとえば P(x) を「x は男性である」という命題関数とし、集合 X を「このクラスのすべての学生がつくる集合」とするとき

任意の
$$x \in X$$
 に対し $P(x)$

というのは命題である (今の場合正しくない命題)。

$$x \in X$$
 が存在して $P(x)$

も命題である (今の場合正しい命題)。

このプリントも含め講義関連のプリントは http://math.cs.kitami-it.ac.jp/~kouno/kougi.html においてある。

 $^{^{(1)}}$ 「任意」という用語は「すべて」と同じ意味で使われる。「任意の x」といった場合,自分がかってに選べる x ではないことに注意すること

 $^{^{(2)}}$ 前に「 $x=1 \implies x^2=1$ 」が命題の様に書いたが、厳密にはこれは間違いであり、正確には「任意の実数 (状況により整数等の場合がある) に対し、 $x=1 \implies x^2=1$ 」と言わなくてはならなかった。ただし「任意の x について \cdots が成立する」ということが前後の脈絡から明らかな場合は省略するという用法もある。そのように解釈すれば間違いとは言えない。高校の教科書などは基本的にそのような立場で記述されている。

⁽³⁾集合は「集合と写像」の章で詳しく学ぶ。ここでは高校までの知識を前提にしておく。

 $^{^{(4)}}x$ が集合 X の元であるという記号、これについては「集合と写像」のところで学ぶ。

 $^{^{(5)}}$ 「命題 P(x) が成立するような元 x が集合 X に存在する」の方が自然な日本語といえるかもしれないが、数学では通常直訳的なこのような表現が使われる。

議論を続ける前に「任意」と「存在」の記号を導入しよう。「任意」を表すのに「 \forall 」、「存在」を表すのに「 \exists 」という記号を使う。元 ϕ は any または all の頭文字の A をひっくり返して \forall とし、exist の頭文字の E をひっくり返して \exists を作ったと言われている。演習問題 1.6 を例にとると、(1) は

$$\forall x \in \mathbb{R} \ x^2 \ge 0$$

(6) は

$$\exists x \in \mathbb{R} \ x - 2x^2 > 0 \land x < 0$$

と書ける。他の命題と混在して誤解が生じる恐れのあるときは括弧でくくって

$$\exists x \in \mathbb{R} \ (x - 2x^2 > 0 \ \land \ x < 0)$$

と書く場合もある。

 \forall を全称記号 (universal quantifier), \exists を存在記号 (existential quantifier), 両者を合わせて限定記号 (quantifier) という。限定記号を用いて前に述べたことをもう一度述べる。P(x) を命題関数とすると

$$\forall x \in X \ P(x), \qquad \exists x \in X \ P(x)$$

はそれぞれ命題になる。

限定記号がはいっていると、前節で考えた論理積・論理和も少し注意する必要が出てくる。全称記号の場合

$$\forall x \in X \ (P(x) \land Q(x)) \iff (\forall x \in X \ P(x)) \land (\forall x \in X \ Q(x))$$

は成立するが

$$\forall x \in X \ (P(x) \lor Q(x)) \iff (\forall x \in X \ P(x)) \lor (\forall x \in X \ Q(x))$$

は成立しない。例えばたとえば、集合 X を「このクラスのすべての学生がつくる集合」,P(x) を「x は男性である」という命題関数,Q(x) を「x は女性である」という命題関数とするときを考えてみよ。存在記号の場合

$$\exists x \in X \ (P(x) \lor Q(x)) \iff (\exists x \in X \ P(x)) \lor (\exists x \in X \ Q(x))$$

は成立するが

$$\exists x \in X \ (P(x) \land Q(x)) \iff (\exists x \in X \ P(x)) \land (\exists x \in X \ Q(x))$$

は成立しない。前と同じ例で考えてみよ。

「任意」「存在」を含んだ命題の否定命題を作るときは注意が必要である。

「 $\forall x \in X$ P(x)」の否定は「 $\forall x \in X$ $\neg P(x)$ 」**ではない**。P(x) が成立しない元が 1 つでもあればよいので「 $\exists x \in X$ $\neg P(x)$ 」である。同様に考えると「 $\exists x \in X$ P(x)」の否定は「 $\forall x \in X$ $\neg P(x)$ 」である。まとめて書くと

$$\neg (\forall x \in X \ P(x)) \iff \exists x \in X \ \neg P(x)$$

$$\neg (\exists x \in X \ P(x)) \iff \forall x \in X \ \neg P(x)$$

となる。

命題関数 P(x) を「xは3以上」とする。

$$\forall x \in \mathbb{R} \ P(x)$$

という命題が正しくないことを示すためには、その否定命題

$$\exists x \in \mathbb{R} \ \neg P(x)$$

が正しいことを示せばよい。たとえば 0 は $0 \in \mathbb{R}$ であり、 $\neg P(0)$ は正しい命題なので否定命題は正しい。よって元の命題が正しくないことが示される。

命題関数 P(x) を「 $x^2 = -1$ 」とする。

$$\exists x \in \mathbb{R} \ P(x)$$

という命題が正しくないことを示すためには、その否定命題

$$\forall x \in \mathbb{R} \ \neg P(x)$$

が正しいことを示せばよい。任意の $x \in \mathbb{R}$ に対し $x^2 \ge 0$ ということが知られているので, $x^2 \ne -1$ 即ち ¬P(x) が成立する。否定命題は正しいので,元の命題が正しくないことが示される。

演習問題 1.6 次の命題の否定命題をつくれ。また真偽を判定せよ。ここで $\mathbb R$ は実数全体からなる集合であり、 $\mathbb C$ は複素数全体からなる集合とする $^{(6)}$ 。

(1)
$$\forall x \in \mathbb{R} \ x^2 \ge 0$$

$$(2) \ \forall x \in \mathbb{C} \ \ x^2 \ge 0$$

(3)
$$\forall x \in \mathbb{R} \ x^4 - x^2 + \frac{1}{4} \ge 0$$

(4)
$$\forall x \in \mathbb{R} \ x^4 - x^2 + \frac{1}{5} \ge 0$$

(5)
$$\exists x \in \mathbb{R} \ x^4 - x^2 + \frac{1}{5} \le 0$$

$$(6) \exists x \in \mathbb{R} \ \left(x - 2x^2 > 0 \ \land \ x < 0 \right)$$

演習問題 1.7 a, b は与えられた実数とする。

任意の
$$x \in \mathbb{R}$$
 に対し $a < x \Longrightarrow b < x$

の否定命題をつくれ。またこの命題の意味を考えることにより、a と b がどのような関係にあるとき真になるか考察せよ。

不定元が2つ (またはそれ以上) あるような命題関数を考える事ができる。例えば「P(x,y):x は y より大きい」とするとき、

$$\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ P(x,y)$$

は命題である。それは「 $\exists y \in \mathbb{R} \ P(x,y)$ 」は不定元 x を含んでおり、命題関数 Q(x) と考えることができるので「 $\forall x \in \mathbb{R} \ Q(x)$ 」が命題になるからである。同様に次の命題:

 $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ P(x, y)$

 $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ P(x, y)$

 $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ P(x,y)$

を考えることができる。「 $\forall x \in \mathbb{R} \exists y \in \mathbb{R} \ P(x,y)$ 」と「 $\exists y \in \mathbb{R} \ \forall x \in \mathbb{R} \ P(x,y)$ 」は異なる命題であることに注意すること。今の場合 (P(x,y):x>y) 前者は正しい命題であるが,後者は正しくない命題である (理由を考えよ:演習問題 1.8 参照)。一方「 $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ P(x,y)$ 」と「 $\forall y \in \mathbb{R} \ \forall x \in \mathbb{R} \ P(x,y)$ 」は同値な命題である。「 $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ P(x,y)$ 」と「 $\exists y \in \mathbb{R} \ \exists x \in \mathbb{R} \ P(x,y)$ 」も同様である。「 $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ P(x,y)$ 」を「 $\forall x,y \in \mathbb{R} \ P(x,y)$ 」と略記する場合も多い。同様に「 $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ P(x,y)$ 」を「 $\exists x,y \in \mathbb{R} \ P(x,y)$ 」と略記する場合も多い。

最初に述べた命題の否定命題をつくろう。Q(x) を「 $\exists y \in \mathbb{R} \ P(x,y)$ 」とすると、もとの命題は

 $\forall x \in \mathbb{R} \ Q(x)$

となる。この命題の否定は

$$\exists x \in \mathbb{R} \ \neg Q(x)$$

⁽⁶⁾以下この講義では \mathbb{R} , \mathbb{C} と書いたら断らなくてもこの意味とする。

である。 $\neg Q(x)$ は

 $\forall y \in \mathbb{R} \ \neg P(x,y)$

なので否定命題は

 $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \neg P(x, y)$

となる。

つまり形式的には、否定命題を作る時は存在を任意に、任意を存在に変え命題を否定すればよいと言う事になる。

演習問題 1.8 「 P(x,y): x>y 」とするとき「 $\forall x\in\mathbb{R}\ \exists y\in\mathbb{R}\ P(x,y)$ 」と「 $\exists y\in\mathbb{R}\ \forall x\in\mathbb{R}\ P(x,y)$ 」の 真偽を考察せよ。

演習問題 1.9 次の命題の否定命題をつくれ。またもとの命題の真偽を確かめよ。

 $(1) \ \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x < y$

 $(2) \exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x < y$

 $(3) \ \forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x < y$

- $(4) \ \exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x < y$
- $(5) \ \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x^2 + y^2 \ge 0$
- $(6) \exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x^2 + y^2 = 0$