演習問題 1.10 次において X は Y の, 1) 必要十分条件,2) 必要条件ではあるが十分条件ではない,3) 十分条件ではあるが必要条件ではない,4) 必要条件でも十分条件でもない,のいずれかであるか決定せよ。ここで x,y は実数とする。

- (1) $X: x^2 = 1$, Y: x = 1
- (2) X : xy > 0, $Y : x > 0 \implies y > 0$
- (3) X : xy > 0, Y : x > 0 $\sharp \, \hbar \, \exists \, y > 0$
- (4) X : xy = 0, Y : x = 0 かつ y = 0
- (5) X : xy = 0, $Y : x = 0 \sharp \hbar t \sharp y = 0$
- (6) X: x = 1 でないかまたは y = 1, Y: xy = 1
- (7) X: xy = 0 かつ y = x + 1, Y: x = 0 かつ y = 1
- (8) $X: x^2 + 2x 1 = 0 \text{ in } x > 0, \quad Y: x = -1 + \sqrt{2}$
- (1) $Y \implies X$ は正しい (このことの証明は不要であろう)。 $X \implies Y$ は x = -1 という反例があるので正しくない。よって X は Y であるための必要条件であるが十分条件ではない。
- **(2)** $Y \implies X$ は正しい (正の数どうしをかけたものは正)。 $X \implies Y$ は x = -1 かつ y = -1 という反例があるので正しくない。よって X は Y であるための必要条件であるが十分条件ではない。
- (3) $X \implies Y$ は x = -1 かつ y = -1 という反例があるので正しくない。 $Y \implies X$ は x = 1 かつ y = -1 という反例があるので正しくない。 よって X は必要条件でも十分条件でもない。
- **(4)** $Y \implies X$ は正しい (x, y obsolution) であれば積 xy = 0)。 $X \implies Y$ は x = 0 かつ y = 1 という反例があるので正しくない。よって X は必要条件である。
- (5) 積の性質から $(xy=0 \iff x=0 \lor y=0)$, X は Y の必要十分条件である。
- **(6)** (追加) X の否定 ¬X は「 $x=1 \land y \neq 1$ 」である。¬X が成立するとき積 xy は 1 にはならない。よって ¬ $X \Longrightarrow \neg Y$ が成立する。対偶を考えることにより $Y \Longrightarrow X$ が成立する。x=2,y=2 のとき X は正しく,Y は正しくない。よって $X \Longrightarrow Y$ は成立しない。以上により X は必要条件である。
- (7) $Y \implies X$ は正しい (x=0,y=1 として xy および x+1 を計算すれば分かる)。 $X \implies Y$ は x=-1 かつ y=0 という反例があるので正しくない。よって X は必要条件であるが十分条件ではない。
- (8) $-1+\sqrt{2}>0$ かつ $(-1+\sqrt{2})^2+2(-1+\sqrt{2})-1=0$ なので $Y \Longrightarrow X$ は正しい。 $x^2+2x-1=0$ の必要十分条件は $x=-1+\sqrt{2}$ または $x=-1-\sqrt{2}$ である。このなかで正の数は $-1+\sqrt{2}$ のみである。よって $X \Longrightarrow Y$ は正しい。X は必要十分条件である。

演習問題 1.11 次の連立方程式の解を求めよ。

- (1) $x(x^2 + y^2) = 0 \text{ in } y(x^2 + y^2 1) = 0$
- (2) $x^3 x + y = 0$ $\Rightarrow y^3 + x y = 0$
- (3) $(y-2x^2y)2^{-x^2-y^2} = 0 \text{ high } (x-2xy^2)2^{-x^2-y^2} = 0$
- (1) $x(x^2+y^2)=0$ である必要十分条件は x=0 または $x^2+y^2=0$ である。 $x^2+y^2=0$ である

必要十分条件は (x,y)=(0,0) である。よって $x(x^2+y^2)=0$ である必要十分条件は x=0 または (x,y)=(0,0) であるが,これは x=0 と同値である。

 \lor , \iff 等の記号を用いた方が分かりやすいかもしれないので、上のことを記号を用いて書いておく。

$$x(x^2 + y^2) = 0$$
 \iff $(x = 0) \lor (x^2 + y^2 = 0)$
 $x^2 + y^2 = 0$ \iff $(x, y) = (0, 0)$

なので

$$(x = 0) \lor (x^2 + y^2) = 0 \iff (x = 0) \lor (x, y) = (0, 0) \iff x = 0$$

となる。

よって与えられた連立方程式は連立方程式

$$(x=0) \wedge (x^2 + y^2 - 1 = 0)$$

と同値である。x=0を 2 番目の式に代入すると $y(y^2-1)=0$ となり, y=0 または y=1 または y=-1 となる。

これらの解を最初に式に代入すると式は成立する。よって求める解は (x,y)=(0,0) または (x,y)=(0,1) または (x,y)=(0,-1) である。

(2) $x^3 - x + y = 0$ を 1 式, $y^3 + x - y = 0$ を 2 式とする。1 式と 2 式を加えると $x^3 + y^3 = 0$ を得る。 $x^3 + y^3 = (x + y)(x^2 - xy + y^2) = 0$ なので

$$x^{3} + y^{3} = 0 \iff (x + y = 0 \lor x^{2} - xy + y^{2} = 0)$$

が成立している。

$$x^{2} - xy + y^{2} = \left(x - \frac{1}{2}y\right)^{2} + \frac{3}{4}y^{2}$$

なので

$$x^{2} - xy + y^{2} = 0 \iff \left(x - \frac{1}{2}y = 0 \land y = 0\right) \iff (x = 0 \land y = 0)$$

となる。よって

$$(x+y=0 \lor x^2-xy+y^2=0) \iff (x+y=0 \lor (x,y)=(0,0)) \iff x+y=0$$

が成立するので

$$x^3 + y^3 = 0 \iff x + y = 0$$

が分かる。この式を3式とすると

$$1 \stackrel{?}{\rightrightarrows} \land 2 \stackrel{?}{\rightrightarrows} \iff 1 \stackrel{?}{\rightrightarrows} \land 3 \stackrel{?}{\rightrightarrows}$$

が成立するので、1 式と 3 式からなる連立方程式を解けばよいことが分かる。3 式を 1 式に代入 することにより $x^3-2=0$ が得られる。 $x^3-2x=x(x^2-2)=x(x-\sqrt{2})(x+\sqrt{2})=0$ なので $x=0,\sqrt{2},-\sqrt{2}$ となる。

これらの解を最初に式に代入すると式は成立する。よって解は $(x,y)=(0,0), (\sqrt{2},-\sqrt{2}), (-\sqrt{2},\sqrt{2})$ である。

(3) 指数関数は 0 になることはないので連立方程式は $y-2x^2y=0$ (1 式) かつ $x-2xy^2=0$ (2 式) と考えることができる。

$$y - 2x^2y = y(1 - 2x^2) = 0$$
 \iff $y = 0 \pm \text{filt } 1 - 2x^2 = 0$ $x - 2xy^2 = x(1 - 2y^2) = 0$ \iff $x = 0 \pm \text{filt } 1 - 2y^2 = 0$

よって

$$1$$
 式かつ 2 式 \iff (1) $x=0$ かつ $y=0$,または
$$(2)$$
 $x=0$ かつ $1-2x^2=0$,または
$$(3)$$
 $1-2y^2=0$ かつ $y=0$,または
$$(4)$$
 $1-2y^2=0$ かつ $1-2x^2=0$

が成立する。(1) のときは (x,y)=(0,0) になる。(2) のときは x=0 を $1-2x^2=0$ を代入すると 1=0 が成立する。これは矛盾なのでこのとき解は存在しない。(3) のとき y=0 を $1-2y^2=0$ を 代入すると 1=0 が成立する。これは矛盾なのでこのとき解は存在しない。(4) のときは $1-2x^2=0$ より $x=\pm\frac{1}{\sqrt{2}}$, $1-2y^2=0$ より $y=\pm\frac{1}{\sqrt{2}}$ となる。

これらの解を最初に式に代入すると式は成立する。以上により

$$(x,y) = (0,0), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$

を得る。