演習問題 5.1 次の極限値を求めよ。

(1)
$$\lim_{n \to \infty} \frac{2n+3}{3n-1}$$
 (2) $\lim_{n \to \infty} \frac{n^2+1}{2n^2+n+1}$ (3) $\lim_{n \to \infty} \frac{\sqrt{n^2+3n+1}}{n+2}$ (4) $\lim_{n \to \infty} \frac{2^n}{3^n-1}$

(1)

$$\lim_{n \to \infty} \frac{2n+3}{3n-1} = \lim_{n \to \infty} \frac{2+\frac{3}{n}}{3-\frac{1}{n}} = \frac{2+0}{3-0} = \frac{2}{3}$$

(2)

$$\lim_{n \to \infty} \frac{n^2 + 1}{2n^2 + n + 1} = \lim_{n \to \infty} \frac{1 + \frac{1}{n^2}}{2 + \frac{1}{n} + \frac{1}{n^2}} = \frac{1 + 0}{2 + 0 + 0} = \frac{1}{2}$$

(3)

$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 3n + 1}}{n + 2} = \lim_{n \to \infty} \frac{\frac{1}{n}\sqrt{n^2 + 3n + 1}}{1 + \frac{2}{n}} = \lim_{n \to \infty} \frac{\sqrt{1 + \frac{3}{n} + \frac{1}{n^2}}}{1 + \frac{2}{n}} = \frac{\sqrt{1 + 0 + 0}}{1 + 0} = 1$$

(4)

$$\lim_{n \to \infty} \frac{2^n}{3^n - 1} = \lim_{n \to \infty} \frac{\frac{1}{3^n} 2^n}{1 - \frac{1}{3^n}} \lim_{n \to \infty} \frac{\left(\frac{2}{3}\right)^n}{1 - \frac{1}{3^n}} = \frac{0}{1 - 0} = 0$$

演習問題 5.2 $\lim_{\substack{n\to\infty\\n\to\infty}}\frac{n^3}{2^n}=0$ を示せ。

(ヒント) $a_n=\frac{n^3}{2^n}$ とする。n を十分大きくすれば $\frac{1}{2}< r<1$ となる適当な r を選んで $\frac{a_{n+1}}{a_n}< r$ とできる。

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^3}{2^{n+1}} \frac{2^n}{n^3} = \lim_{n \to \infty} \frac{1}{2} \cdot \frac{(n+1)^3}{n^3} = \frac{1}{2}$$

となっている。十分大きな n に対し b_n はその極限値 $\frac{1}{2}$ に近い。よって $\frac{1}{2} < r < 1$ となる実数 r が存在して,十分大きな自然数 N を選べば N 以上の大きい自然数 n に対し $b_n < r$ が成立している。N 以上の自然数 n に対し

が成立している。

よって n > N となる任意の自然数に対し

$$a_n < rac{a_{n-1}}{< r^2 a_{n-2}} < \dots < r^{n-N} a_N$$

が成立する。即ち

$$0 < a_n < r^{n-N} a_N$$

が成立している。 $\lim_{n\to\infty}0=0=\lim_{n\to\infty}r^{n-N}a_N$ なのではさみうちの定理より $\lim_{n\to\infty}a_n=0$ が成立する。

演習問題 5.3 次をもとめよ。

(1)
$$\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right)$$

(2)
$$\lim_{n\to\infty} (n^2-2n)$$

(1)

$$\lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \right) = \lim_{n \to \infty} \frac{\left(\sqrt{n+1} - \sqrt{n} \right) \left(\sqrt{n+1} + \sqrt{n} \right)}{\left(\sqrt{n+1} + \sqrt{n} \right)}$$

$$= \lim_{n \to \infty} \frac{n+1-n}{\left(\sqrt{n+1} + \sqrt{n} \right)}$$

$$= \lim_{n \to \infty} \frac{1}{\left(\sqrt{n+1} + \sqrt{n} \right)} = 0$$

(2)

$$(n^2 - 2n) = (n-1)^2 - 1$$

なので収束せず $\lim_{n\to\infty} \left(n^2 - 2n\right) = \infty$ となる。

演習問題 5.4 電卓等を使って数列 (2) の部分和を S_0 から S_{10} まで計算し, S_n がしだいに e に近づくことをたしかめよ。また $a_{10}=\left(1+\frac{1}{10}\right)^{10}$, $a_{100}=\left(1+\frac{1}{100}\right)^{100}$, $a_{1000}=\left(1+\frac{1}{1000}\right)^{1000}$ の値と比較せよ。

この問題の解説は省略する。各自計算してみて下さい。1 つだけ注意を。関数電卓等で計算するとき厳密な議論をするのであれば、関数電卓自身の誤差には注意する必要がある。マスマティカやメイプルなどの数式処理ソフトを使うと誤差なしに計算が実行できる。講義関連の main pageに free な数式処理ソフト Maxima を紹介してあるので、MAxima でも同様に計算できる。プログラム言語のライブラリ等を用いても同様のことはできる。また自分自身でそのようなプログラムを書くことも可能である。興味のあるものは各自試みることを期待します。

演習問題 5.5 次をもとめよ。

$$(1) \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n$$

$$(2) \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{2n}$$

(1)

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n \frac{\left(1 + \frac{1}{n+1} \right)}{\left(1 + \frac{1}{n+1} \right)}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n+1} \frac{1}{\left(1 + \frac{1}{n+1} \right)}$$

$$= e \cdot 1 = e$$

(2)

$$\begin{split} \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{2n} &= \lim_{n \to \infty} \left\{ \left(1 + \frac{1}{n} \right)^n \cdot \left(1 + \frac{1}{n} \right)^n \right\} \\ &= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e^2 \end{split}$$

演習問題 5.6 (1) より次を示せ。

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = \lim_{x \to 0} \frac{(\cos x - 1)(\cos x + 1)}{x(\cos x + 1)} = \lim_{x \to 0} \frac{\cos^2 x - 1}{x(\cos x + 1)}$$
$$= \lim_{x \to 0} \frac{-\sin^2 x}{x(\cos x + 1)} = -\lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{\sin x}{\cos x + 1}$$
$$= -1 \cdot \frac{0}{2} = 0$$

演習問題 *5.7

(1) 図 5.1 を参考にして x > 0 のとき, $\lim_{x \to +0} \frac{\sin x}{x} = 1$ を示せ。

(2)
$$x = -t$$
 とおくことにより $\lim_{x \to -0} \frac{\sin x}{x} = 1$ を示せ。

(1), (2) より
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 が示される。

$$(3)$$
 $\lim_{t\to\infty} \left(1+\frac{1}{t}\right)^t = e$ を示せ。

(5)
$$\lim_{u\to 0} (1+u)^{\frac{1}{u}} = e$$
 を示せ。

(6)
$$x = \log(1+u)$$
 とおくことにより $\frac{e^x - 1}{x} = 1$ を示せ。

(1) x > 0 とする。図 5.1 より

である。それぞれの面積を計算すると

$$\frac{1}{2}\sin x < \frac{x}{2} < \frac{1}{2}\tan x$$

これより分母の2をはらい,逆数をとれば

$$\frac{\cos x}{\sin x} < \frac{1}{x} < \frac{1}{\sin x}$$

よって

$$\cos x < \frac{\sin x}{r} < 1$$

 $x \to +0$ のとき $\cos x \to 1$ だから $\lim_{x \to +0} \frac{\sin x}{x} = 1$ が成立する。

(2) x=-t とおくと x<0 のとき t>0 であり, $x\to -0$ とするとき $t\to +0$ となる。また $\sin(-t)=-\sin t$ なので

$$\lim_{x\to -0}\frac{\sin x}{x}=\lim_{t\to +0}\frac{\sin (-t)}{-t}=\lim_{t\to +0}\frac{-\sin t}{-t}=\lim_{t\to +0}\frac{\sin t}{t}$$

となるので (1) とあわせて $\lim_{x\to -0} \frac{\sin x}{x} = 1$ が成立する。

(3) $n \le t < n+1$ となる自然数 n をとる, $1 + \frac{1}{n+1} < 1 + \frac{1}{t} \le 1 + \frac{1}{n}$ より

$$\left(1 + \frac{1}{n+1}\right)^n < \left(1 + \frac{1}{t}\right)^t < \left(1 + \frac{1}{n}\right)^{n+1}$$

となる。

$$\left(1 + \frac{1}{n}\right)^{n+1} = \left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{n}\right) \to e \qquad (n \to \infty)$$

$$\left(1 + \frac{1}{n+1}\right)^n = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)} \to e \tag{n \to \infty}$$

だから $\lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^t = e$

$$\left(1 + \frac{1}{t}\right)^t = \left(1 - \frac{1}{u}\right)^{-u} = \left(\frac{u - 1}{u}\right)^{-u} = \left(1 + \frac{1}{u - 1}\right)^u \\
= \left(1 + \frac{1}{u - 1}\right)^{u - 1} \left(1 + \frac{1}{u - 1}\right) \to e \qquad (u \to \infty)$$

なので $\lim_{t \to -\infty} \left(1 + \frac{1}{t} \right)^t = e \,$ が成立する。

(5)
$$u=\frac{1}{t}$$
 とおくと, $\left(1+\frac{1}{t}\right)^t=(1+u)^{\frac{1}{u}}$ となる。 $t\to\infty$ のとき $u\to+0$ なので

$$\lim_{u \to +0} (1+u)^{\frac{1}{u}} = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^t = e$$

が成立する。また $t \to -\infty$ のとき $u \to -0$ なので

$$\lim_{u \to -0} (1+u)^{\frac{1}{u}} = \lim_{t \to -\infty} \left(1 + \frac{1}{t}\right)^t = e$$

が成立する。以上により

$$\lim_{u \to 0} (1+u)^{\frac{1}{u}} = e$$

が得られる。

(6)
$$x = \log(1+u)$$
 とおくと、 $1+u=e^x$ より、 $u=e^x-1$ となる。 $u \to 0$ のとき $x \to 0$ なので

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{u \to 0} \frac{u}{\log(1 + u)} = \lim_{u \to 0} \frac{1}{\frac{1}{u} \log(1 + u)}$$
$$= \lim_{u \to 0} \frac{1}{\log(1 + u)^{\frac{1}{u}}} = \frac{1}{\log e} = \frac{1}{1} = 1$$