## 数学序論要綱 #15

## 6 1変数関数の不定積分

この章では不定積分について学ぶ。数学序論では基本的な部分の復習のみ扱う。一般の有理関数の不定積分や少し複雑な置換積分などは解析学 I で,定積分,2 変数関数の積分は解析学 II で扱う。

### 6.1 定義と諸性質

関数 F(x) が微分可能で

$$\frac{d}{dx}F(x) = f(x)$$

となるとき , F(x) を f(x) の原始関数 (primitive function) または不定積分 (indefinite integral) といい ,

$$\int f(x) \, dx = F(x)$$

と表す。原始関数は f(x) から一意的に決まるものではない。しかし次の命題から定数の差しかない事が分かる。

命題  ${\bf 6.1}$  2 つの関数 F(x),~G(x) が F'(x)=G'(x) を満たせばある定数 C が存在して G(x)=F(x)+C が成立する。

例えば 
$$\left(\frac{1}{3}x^3+C\right)'=x^2$$
 なので

$$\int x^2 \, dx = \frac{1}{3}x^3 + C$$

となる。この C を積分定数と呼ぶが,この講義ではなければ混乱する場合を除き通常省略する。またこの章の以下の部分で関数は積分可能であることを仮定し,そのことをいちいち断らないこととする。

演習問題 **6.1** 次の定理は平均値の定理と呼ばれる。平均値の定理の成立を前提として命題 6.1 を証明せよ。

関数 f が  $[\,a,\,b\,]$  で連続であり, $(\,a,\,b\,)$  で微分可能であるとする。このときある実数 c で a < c < b かつ

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$

を満たすものが存在する。

命題 6.2 [積分の線型性]

(1) 
$$\int_{C} \{f(x) + g(x)\} dx = \int_{C} f(x) dx + \int_{C} g(x) dx$$

(2) 
$$\int af(x) dx = a \int f(x) dx$$

命題 6.3 [いくつかの関数の不定積分]

(1) 
$$\int x^a dx = \frac{1}{a+1} x^{a+1}$$
  $(a \neq -1)$  (2)  $\int \frac{1}{x} dx = \log|x|$   
(3)  $\int \cos x dx = \sin x$  (4)  $\int \sin x dx = -\cos x$   
(5)  $\int e^x dx = e^x$  (6)  $\int a^x dx = \frac{a^x}{\log a}$   
(7)  $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x$  (8)  $\int \frac{1}{1+x^2} dx = \arctan x$ 

 $\sqrt{1-x^2} \ dx = rcsin x$   $(8) \int \frac{1}{1+x^2} \ dx = rctan x$  これらの命題はすべて微分法の対応する公式を積分の言葉に直すと出てくる。ここでは命題 6.2

(1) と命題 6.3 (1) を示し残りは演習問題とする。 $F(x) = \int f(x) \, dx$  ,  $G(x) = \int g(x) \, dx$  とおくと , F'(x) = f(x) , G'(x) = g(x) である。このとき (F(x) + G(x))' = F'(x) + G'(x) = f(x) + g(x) より  $\int \{f(x) + g(x)\} \, dx = F(x) + G(x) = \int f(x) \, dx + \int g(x) \, dx$  が得られる。

$$a \neq -1$$
 のとき  $\left(rac{1}{a+1}x^{a+1}
ight)' = x^a$  なので  $\int x^a \, dx = rac{1}{a+1}x^{a+1}$  を得る。

微分法の公式と積分法の公式を丸暗記して混乱する人もいるが,その様な人に対しては(丸暗記を推奨する分けではないが,かりに丸暗記をするとしたら)「微分法の公式だけにして,積分法は微分法から導いたほうがよい」と言っておこう。

演習問題 6.2 命題 6.2 及び命題 6.3 を証明せよ。

### 6.2 置換積分法と部分積分法

積分の計算は微分の計算に比べ一般に難しい。計算の方法として置換積分法と部分積分法の2つがある。合成関数の微分法を積分に翻訳したのが置換積分法であり、積の微分法を積分に翻訳したのが部分積分法である。最初は置換積分法から。

定理  $\mathbf{6.4}$  [置換積分法]  $x=\varphi(t)$  とすると ,

$$\int f(x) dx = \int f(\varphi(t))\varphi'(t) dt$$

証明  $\int f(x)\,dx = F(x)$  のとき  $\frac{d}{dx}F(x) = f(x)$  である。合成関数の微分法により

$$\frac{d}{dt}F(\varphi(t)) = \frac{d\varphi(t)}{dt}\frac{d}{dx}F(x) = \frac{d\varphi(t)}{dt}f(x)$$

なので

$$\int f(\varphi(t)) \frac{d\varphi(t)}{dt} dt = F(\varphi(t)) = F(x) = \int f(x) dx$$

#### を得る。▮

幾つかの例を見ておこう。

最初に変数が 1 次式になっている形の積分を考える。  $I=\int\cos(2x+3)\,dx$  を考える。 t=2x+3 と置くと ,  $\frac{dt}{dx}=2$  なので ,  $dx=\frac{1}{2}dt$  である。よって

$$I = \int \cos t \frac{1}{2} dt = \frac{1}{2} \int \cos t dt = \frac{1}{2} \sin t = \frac{1}{2} \sin(2x + 3)$$

次に置換積分の特徴的な形として  $I=\int u'f(u)\,dx$  という形の積分を見よう。最初は  $f(u)=rac{1}{u}$  の場合 , 即ち  $\int rac{u'}{u}dx$  の積分を考える。この形は対数型と呼ばれる。

$$I=\intrac{x}{1+x^2}\,dx$$
 を考える。  $t=1+x^2$  とおくと ,  $rac{dt}{dx}=2x$  なので ,  $dx=rac{1}{2x}dt$  , よって

$$I = \int \frac{x}{1+x^2} dx = \int \frac{x}{t} \frac{1}{2x} dt = \frac{1}{2} \int \frac{1}{t} dt = \frac{1}{2} \log t = \frac{1}{2} \log(1+x^2)$$

となる。

対数型 2 番目:  $\int \tan x \, dx$  を考える。  $\tan x = \frac{\sin x}{\cos x}$  なので  $u = \cos x$  とおくと,  $\frac{du}{dx} = -\sin x$  より  $dx = -\frac{1}{\sin x} du$  である。よって

$$I = -\int \frac{\sin x}{u} \frac{1}{\sin x} du = -\int \frac{1}{u} du = -\log|u| = -\log|\cos x|$$

次に対数型でない例  $I=\int \cos x \sin^n x \, dx$  を考える。 $s=\sin x$  とおくと  $\dfrac{ds}{dx}=\cos x$  なので

$$I = \int \cos x \sin^n x \, dx = \int \cos x \, s^n \frac{1}{\cos x} \, ds = \int s^n \, ds = \frac{1}{n+1} s^{n+1} = \frac{1}{n+1} \sin^{n+1} x \, ds$$

定理 6.5 [部分積分法]

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

証明 定義より任意の微分可能な関数 h(x) に対し

$$\int h'(x) \, dx = h(x)$$

が成立している。  $\frac{d}{dx}\left(f(x)g(x)\right)=\frac{d}{dx}f(x)g(x)+f(x)\frac{d}{dx}g(x)$  の両辺を積分すると

$$f(x)g(x) = \int f'(x)g(x) dx + \int f(x)g'(x) dx$$

を得る。これを移項すると定理が得られる。 ■

定理は移項すると

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

の形になる。実際に適応するときは,どちらを微分されたものと考えるかで 2 通り方法がある。次の例は最初は後者,次は前者の形の適応である。

$$\int xe^x \, dx = \int x(e^x)' \, dx = xe^x - \int (x)'e^x \, dx = xe^x - \int e^x \, dx = xe^x - e^x$$

$$\int x \log x \, dx = \int \left(\frac{1}{2}x^2\right)' \log x \, dx = \frac{1}{2}x^2 \log x - \int \frac{1}{2}x^2 \frac{1}{x} \, dx = \frac{1}{2}x^2 \log x - \frac{1}{4}x^2$$

部分積分を2回実行する必要のある次の様な形の積分もある。

$$\int x^2 e^x dx = \int x^2 (e^x)' dx = x^2 e^x - \int (x^2)' e^x dx = x^2 e^x - \int 2x e^x dx$$
$$= x^2 e^x - 2 \int x e^x dx = x^2 e^x - 2x e^x + 2e^x$$

また 1 = (x)' と考える言わば退化した形で用いられる積分もある。

$$\int \log x \, dx = \int (x)' \log x \, dx = x \log x - \int x \frac{1}{x} \, dx = x \log x - x$$

演習問題 6.3 次の関数の不定積分を求めよ。

$$(1) (2x+5)^6$$

(2) 
$$e^{-2x}$$

(3) 
$$\sin \frac{x}{2}$$

$$(4) x(3x^2+1)^8$$

(5) 
$$\frac{x}{(1+x^2)^3}$$

$$(6) xe^{3x}$$

(7) 
$$x^2 e^{3x}$$

(8) 
$$\tan x$$

$$(9) x \sin x$$

$$(10) x^2 \cos x$$

$$(11) x^3 \log x$$

$$(12) (\log x)^2$$

(13) 
$$\arctan x$$

(14) 
$$\arcsin x$$

$$(15) e^x \sin x$$

(16) 
$$e^x \cos x$$

# 

重要な注意: 不定積分において計算は一般に大変であるが,検算は簡単である。求めた関数を微分して元の被積分関数になればよい。必ず検算をする事!!