6 線型微分方程式

6.1 微分方程式とは

以前は高校の数学 III で微分方程式を扱っていたが,現在の課程からはなくなっている。物理学等ですでに扱っているとは思うが,微分方程式はどんなものか」という説明から始める。最初は例から。

質量 m の物体 (質点と考える) が x 軸上を運動している。時刻 t における質点の x 座標を x=x(t) とする。物体には原点からの距離に比例する原点向きの力 F=-kx が働いているとする。 ニュートンの運動方程式 $F=m\alpha$ (α は加速度) より x は

$$-kx = m\frac{d^2x}{dt^2}$$

を満たす。この様にある関数とその導関数及び高次導関数の間に成立する式を微分方程式という。この微分方程式を満たす関数(微分方程式の解と呼ばれる)は,すべて $x=C_1\cos\omega t+C_2\sin\omega t$ (ただし $\omega=\sqrt{\frac{k}{m}}$ とする)という形をしている事が分かる(この事は後で導く)。このような解は一般解と呼ばれる。「微分方程式を解く」とは微分方程式の一般解を求めることである。t=0 のとき原点にあり,そのときの速度が v_0 である様な解を考える。その解は $x(0)=0,\frac{dx}{dt}(0)=v_0$ を満たすので, $x=v_0\sin\omega t$ である事が分かる。この様に(初期条件と呼ばれる)或る種の条件を付加する事により得られる解を特殊解と呼ぶ。

一般的に微分方程式を定義しよう。前の例は独立変数が t,従属変数が x であったが,ここでは独立変数 x,従属変数 y としよう $^{(1)}$ 。n を自然数とする。n+2 変数関数 $F(x,Y_0,Y_1,\ldots,Y_n)^{(2)}$ が与えられているとする。このとき

$$F(x, y, y', \dots, y^{(n)}) = 0 \tag{*}$$

を n 階の微分方程式 (differential equation) と呼び,関数 y で (*) を満たすものを微分方程式の解 (solution) という。すべての解を含む,一般に任意定数を n 個含む解を一般解 (general solution) といい,任意定数を含まない解を特殊解 (particular solution) という。「微分方程式を解く」とは 与えられた微分方程式の一般解を求める事をいう。

最初の例は (独立変数を t とする) , $F(t, X_0, X_1, X_2) = mX_2 + kX_0$ とおけばよい。

自然科学において事象を解析するときの常套手段として微分方程式がある。事象から量的関係を抽出して微分方程式を立てる。それを解く事により事象を解析する。微分方程式が解けない場合は

このプリントも含め講義関連のプリントは http://math.cs.kitami-it.ac.jp/~kouno/kougi.html においてある。

⁽¹⁾独立変数が 2 つ以上ある多変数関数に関する微分方程式 (偏微分方程式と呼ばれる) もあるが,ここでは扱わない。偏微分方程式も扱う立場では,我々が微分方程式と呼んでいるものを常微分方程式と呼ぶ。

⁽²⁾ F が Y_n に依存しないとき , 即ち Y_n が変化しても F が変化しない場合を除く。

近似計算等を行う。これは自然科学で 300 年以上も行われてきて,今でも行われている,ある意味で最も強力な解析手段である。近年は社会科学においてもこの様な方法が用いられている。

与えられた条件から微分方程式を導出することを考えよう。このことを「微分方程式を立てる」という。実際の研究においては微分方程式を解く事よりも、微分方程式を立てる事の方が大事な場合が多い。微分方程式を解く方法は(解けるものは)色々研究されていて、多くの本に記載されている。しかし自分が研究対象に選んだ事象がどの様な微分方程式を満たすかは、その研究をしているもの自身が見つける必要がある。

例を考える。平面内に曲線 y=f(x) がある。この曲線は曲線上の任意の点における法線 (接線と直交する曲線) が原点を通る。このとき曲線が満たすべき微分方程式を立てよう。曲線上の点の座標をを (x,y) とする。この点における接線の傾きは $y'=\frac{dy}{dx}$ である。法線は接線と直交するので傾きは $-\frac{1}{y'}$ である。法線上の点の座標を (X,Y) とすると法線の方程式は

$$Y = -\frac{1}{v'}(X - x) + y$$

となる。この直線は原点(0,0) を通るので $0=-rac{1}{y'}(0-x)+y$,即ち

$$yy' + x = 0$$

を得る。次節で後でこの微分方程式を解く。

演習問題 6.1 次の条件の下で微分方程式を立てよ。

- (1) 曲線 y=f(x) 上の点を P とする。P における法線が x 軸と交わる点を N , P から x 軸へ下 ろした垂線の足を Q とすると線分 QN の長さが常に一定である。
- (2) 曲線 y=f(x) 上の点を P とする。 P における接線が x 軸と交わる点を S , y 軸と交わる点を T とすると点 P は線分 ST の中点である。
- (3) 空気中を落下する物体に働く空気の抵抗は速度の 2 乗に比例する。比例定数を k , 重力定数を g とする。速度を v とするとき v が満たすべき微分方程式を求めよ。

6.2 变数分離型

最も簡単な微分方程式は $\frac{dy}{dx}=f(x)$ であろう。これは f(x) の不定積分が求まれば , $y=\int f(x)dx$ と求まる。

次に簡単なタイプが $\frac{dy}{dx}=\lambda y\;(\lambda\;$ は定数) であろう。これに関しては次が成立する。

命題 6.1 微分方程式 $\dfrac{dy}{dx}=\lambda y$ の一般解は $y=Ce^{\lambda x}$ である。

証明 恒等的に 0 となる写像 $y\equiv 0$ は解になっている。よって $y\not\equiv 0$ とする。ある点 x で 0 ではないの y で両辺を割ると $\frac{1}{y}\frac{dy}{dx}=\lambda$ が得られる。両辺を x で積分すると

$$\int \frac{1}{y} dy = \int \frac{1}{y} \frac{dy}{dx} dx = \int \lambda dx$$

となる。 $\int rac{1}{y} dy = \log|y|, \int \lambda dx = \lambda x + C_1$ なので, $|y| = e^{\lambda x + C_1} = e^{C_1} e^{\lambda x}$ を得る。よって $C=\pm e^{C_1}$ とおくと, $y=Ce^{\lambda x}$ となる。この式は最初の $y\equiv 0$ の場合も含んでいるので,一般解 が得られた。■

dx,dy を独立なものと扱って $\dfrac{dy}{dx}=\lambda y$ より $\dfrac{1}{y}dy=\lambda dx$ のような計算を行う場合がある。命 題 6.1 の証明中の式でいうと $\int rac{1}{y} dy = \int \lambda dx$ 等書かれる。数学的に厳密でないように見えるが, これをきちんとした数学的枠組みで議論する方法も知られている。

命題 6.1 の証明方法を一般化すると、微分方程式の解を求める方法として変数分離型と呼ばれる ものが得られる。

$$\frac{dy}{dx} = f(x)g(y)$$

の形の微分方程式を変数分離型の微分方程式と呼ぶ。 $\dfrac{1}{a(y)}dy=f(x)dx$ と変形すると ,

$$\int \frac{1}{q(y)} dy = \int f(x) dx$$

が得られる。この積分が計算できればyを含む式が得られ,yについて解ければ解が得られる。 例えば $\dfrac{dy}{dx}=2xy$ を考える。 $\dfrac{1}{y}dy=2xdx$ より $\int\dfrac{1}{y}dy=\int 2xdx,\,\log|y|=x^2+C_1$ となり , $y = Ce^{x^2} = C \exp(x^2)^{(1)}$ を得る。

演習問題 6.2 次の微分方程式を解け。

(1) yy' + x = 0

- (2) 演習問題 6.1 (1) で得られた微分方程式
- (3) 演習問題 6.1 (2) で得られた微分方程式 (4) 演習問題 6.1 (3) で得られた微分方程式

今まで微分方程式に対して解は存在する事を前提にした議論をしてきた。しかし、微分方程式が 与えられた時,その解はいつでも存在するのだろうか。偏微分方程式も含めるとそれは正しくな い事が知られている。次の定理は(常)微分方程式の解の存在と一意性を保証するものである。証 明抜きで紹介しておく。 微分方程式が $rac{d^n y}{dx^n} = f(x,y,y'\dots,y^{(n-1)})$ の形をしているとき正規型と

定理 $\mathbf{6.2}$ [微分方程式の解の存在と一意性] $f(x,Y_0,Y_1,\ldots,Y_{n-1})$ はある領域 R で C^1 級 (導関数 が連続) とする。R 内の点 $(a_0,b_0,b_1,\ldots,b_{n-1})$ を 1 つ指定する。このとき微分方程式

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$

の解で $y(a_0)=b_0, y'(a_0)=b_1,\dots,y^{(n-1)}(a_0)=b_{n-1}$ を満たすものが唯1 つ存在する。

 $^{^{(1)} \}exp{(f(x))} = e^{f(x)}$ である。f(x) が複雑な式の場合,指数の肩に複雑な式があるのは見にくいので,この様な表記を