注意: ・答案は日本語として理解可能なものである事。数式に対し説明が必要な場合に、数式のみで説明がないときには仮に数式が正しくても満点とならないことがある。

- ・採点は減点法を採用する。つまり間違いの内容によっては**白紙答案より低い点数になる**場合がある。careless miss でそのような事はないが、「分からなくても適当に何か書いておけ」という姿勢で回答するとそうなることがある。
- ・内容を理解せずに丸暗記していると判断されたものに対して大きく減点することがあるので注意すること。
- ・在籍番号欄について: 再履修者は10桁の在籍番号を書く事。再履修者以外は出席番号(多くは2桁)でよい。

1	(1) 領域 $D =$	$\left\{(x,y)\in\mathbb{R}^2\big a\leq x\leq b,c\leq y\leq d\right\}$ を長方形領域とする。連続な関数 $f(x,y)$ の D における重積分 $\int_0^x dx$	\iint_{D}	f(x,y)dxdy
	定義を述べよ。	可能なものは連続な関数ではなく有界な関数に対する定義を述べよ(どちらの関数に関しての定義か明記	する	こと)。

(2) $D = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 2, 2 \le y \le 4\}$ とする。重積分

$$\iint_{D} x dx dy$$

を定義に基づき計算せよ。

裏にも問題あり。別紙にも問題あり

学		主番	氏
科	籍	籍号	名

2 次の重積分について考える。ただし $D = \{0 \le y \le x \le 1\}$ とする。

$$I = \iint_D e^{-x^2} dx dy$$

- (1) 領域 D を図示せよ。
- (2) D を横線形 ($\{(x,y) \mid c \le y \le d, h_1(y) \le x \le h_2(y)\}$ の形) の形で表せ。
- (3) 重積分 I を x を先に計算する形の累次積分で表せ (計算を実行しなくてもよい)。
- (4) D を縦線形 ({ $(x,y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)$ } の形) の形で表せ。
- (5) 重積分 I を y を先に積分する形の累次積分で表せ (計算を実行しなくてもよい)。
- (6) I を求めよ。

3 次の問に答えながら $I = \int_0^\infty \exp\left(-x^2\right) dx$ を求めよ。そのためにまず広義積分

$$J = \iint_{D} \exp\left(-x^{2} - y^{2}\right) dx dy \qquad D = \left\{ \, (x,y) \in \mathbb{R}^{2} \, \middle| \, \, x \geq 0, y \geq 0 \, \right\}$$

を計算する。

- (1) $\{A_n\}$ が D の近似増加列であることの定義を述べよ。
- (2) 自然数 n に対し $A_n = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x, 0 \le y, x^2 + y^2 \le n^2 \}$, $J_n = \iint_{A_n} \exp\left(-x^2 y^2\right) dx dy$ とおく。このとき J を用いて表せ。このとき極限記号 $\lim_{n \to \infty}$ を用いてよい。
- (3) $x=r\cos\theta, y=r\sin\theta$ と変数変換をする。このとき A_n に対応する $r\theta$ —平面の領域を E_n とする。 E_n を求め,図示せよ。

- (4) この対応で一対一でない部分を求めよ。
- (5) ヤコビアン $\frac{\partial(x,y)}{\partial(r,\theta)}$ を計算せよ (計算過程も書くこと)。
- (6) $J_n = \iint_{A_n} \exp\left(-x^2 y^2\right) dx dy$ を求めよ。(問題は裏に続く)

裏にも問題有り。別紙にも問題あり

学	在番	氏
科	籍号	名

- (7) *J*を求めよ。
- (8) 自然数 n に対し $B_n = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le n, 0 \le y \le n\}$, $K_n = \iint_{B_n} \exp(-x^2 y^2) dxdy$ とおくとき $K_n = \left\{ \int_0^n \exp(-x^2) dx \right\}^2$ が成立する事を示せ。

- (9) J を K_n を用いて表せ。このとき極限記号 $\lim_{n\to\infty}$ を用いてよい。
- (10) $J \in I$ を用いて表せ。
- (11) Iを求めよ。
- 4 3 重積分

$$I = \iiint_D 6z dx dy dz \qquad D = \left\{ \left. (x,y,z) \in \mathbb{R}^3 \; \right| \; 1 \leq x+y \leq x+y+z \leq 1, 0 \leq x \leq 1 \, \right\}$$

を次に従って求めよ。

(1) 累次積分の形に直せ。

(2) Iを求めよ。