(4,1),[:1] $BZ_1$
K1-1 |
(5,1),R[1:1] $BRZ_1$ $33$
K2-1 |
(5,2),[:2] $BZ_2$ K1-2 |
(6,1),R[2:1] $BR^2Z_1$ 343
K3-1 |
(7,1),R[3:1] $BR^3Z_1$ $34^23$
K4-01 |
(7,2),L[1:2] $BLZ_2$
K2-2 |
(7,3),R[1:2] $BRZ_2$ $3T4$
K2-2 |
(8,1),R[4:1] $BR^4Z_1$ $34^33$
K5-1 |
(8,3),L[1:1] $BLZ_1$
K2-3 |
(9,1),R[5:1] $BR^5Z_1$ $34^43$
K6-1 |
(9,2),L[2:2] $BL^2Z_2$
K3-3 34T4 |
(9,4),R[2:2] $BR^2Z_2$ $34Y4$
K3-3 |
(10,1),R[6:1] $BR^6Z_1$ $34^53$
K7-1 |
(10,3),R[1,1:2] $BRLZ_2$
K3-2 |
(11,1),R[7:1] $BR^7Z_1$ $34^63$
K8-001 |
(11,2),L[3:2] $BL^3Z_2$ $34^34$
K4-04 |
(11,3),L[1,1:1] $BLRZ_1$
K3-4 |
(11,4),R[1,1:1] $BRLZ_1$
K3-4 |
(11,5),R[3:2] $BR^3Z_2$
K4-04 |
(12,1),R[8:1] $BR^8Z_1$ $34^73$ |
(12,5),L[2:1] $BL^2Z_1$
K3-5 |
(13,1),R[9:1] $BR^9Z_1$ $34^83$ |
(13,2),L[4:2] $BL^4Z_2$
K5-07 |
(13,3),R[1,2:2] $BRL^2Z_2$
K4-02 |
(13,4),R[2,1:2] $BR^2LZ_2$
K4-02 |
(13,5),L[1,1:2] $BLRZ_2$
K3-6 |
(13,6),R[4:2] $BR^4Z_2$
K5-07 |
(14,1),R[10:1] $BR^{10}Z_1$ $34^93$ |
(14,3),L[1,2:1] $BLR^2Z_1$
K4-05 |
(14,5),R[2,1:1] $BR^2LZ_1$
K4-05 |
(15,1),R[11:1] $BR^{11}LZ_1$ $34^{10}3$ |
(15,2),L[5:2] $BL^5Z_2$
K6-011 |
(15,4),R[1,1,1:1] $BRLRZ_1$
K4-03 |
(15,7),R[5:2] $BR^5Z_2$ $34^44$
K6-011 |
(16,1),R[12:1] $BR^{12}Z_1$ $34^{11}3$ |
(16,3),R[1,3:2] $BRL^3Z_2$
K5-02 |
(16,5),R[3,1:2] $BR^3LZ_2$
K5-02 |
(16,7),L[3:1] $BL^3Z_1$
K4-08 |
(17,1),R[13:1] $BR^{13}Z_1$ $34^{12}3$ |
(17,2),L[6:2] $BL^6Z_2$ K7-21 |
(17,3),L[1,3:1] $BLR^3Z_1$
K5-08 |
(17,4),R[2,2:2] $BR^2L^2Z_2$
K5-03 |
(17,5),L[2,1:1] $BL^2RZ_1$
K4-06 |
(17,6),R[3,1:1] $BR^3LZ_1$
K5-08 |
(17,7),R[1,2:1] $BRL^2Z_1$
K4-06 |
(17,8),R[6:2] $BR^6Z_2$ K7-21 |
(18,1),R[14:1] $BR^{14}Z_1$ $34^{13}3$ |
(18,5),L[1,1,1:2] $BLRLZ_2$
K4-07 |
(18,7),R[1,1,1:2] $BRLRZ_2$
K4-07 |
(19,1),R[15:1] $BR^{15}Z_1$ $34^{14}3$ |
(19,2),L[7:2] $BL^7Z_2$ |
(19,3),R[1,4:2] $BRL^4Z_2$
K6-002 |
(19,4),R[1,1,2:1] $BRLR^2Z_1$
K5-04 |
(19,5),R[2,1,1:1] $BR^2LRZ_1$
K5-04 |
(19,6),R[4,1:2] $BR^4LZ_2$
K6-002 |
(19,7),L[2,1:2] $BL^2RZ_2$
K4-09 |
(19,8),L[1,2:2] $BLR^2Z_2$ |
(19,9),R[7:2] $BR^7Z_2$ |
(20,1),R[16:1] $BR^{16}Z_1$ $34^{15}3$ |
(20,3),L[1,4:1] $BLR^4Z_1$
K6-012 |
(20,7),R[4,1:1] $BR^4LZ_1$
K6-012 |
(20,9),L[4:1] $BL^4Z_1$
K5-15 |
(21,1),R[17:1] $BR^{17}Z_1$ $34^{16}3$ |
(21,2),L[1,8:2] $BLR^8Z_2$ |
(21,4),R[2,3:2] $BR^2L^3_2$
K6-003 |
(21,5),R[3,2:2] $BR^3L^2Z_2$
K6-003 |
(21,8),L[1,1,1:1] $BLRLZ_1$
K4-10 |
(21,10),R[8:2] $BR^8Z_2$ |
(22,1),R[18:1] $BR^{18}Z_1$ $34^{17}3$ |
(22,3),R[1,5:2] $BRL^5Z_2$ |
(22,5),L[2,2:1] $BL^2R^2Z_1$
K5-10 |
(22,7),R[5,1:2] $BR^5LZ_2$ |
(22,9),R[2,2:1] $BR^2L^2Z_1$
K5-10 |
(23,1),R[19:1] $BR^{19}Z_1$ $34^{18}3$ |
(23,2),L[1,9:2] $BLR^9Z_2$ |
(23,3),L[1,5:1] $BLR^5Z_1$ K7-22 |
(23,4),R[1,1,3:1] $BRLR^3Z_1$
K6-004 |
(23,5),L[1,1,2:2] $BLRL^2Z_2$
K5-11 |
(23,6),R[3,1,1:1] $BR^3LRZ_1$
K6-004 |
(23,7),L[3,1:1] $BL^3RZ_1$
K5-09 |
(23,8),R[5,1:1] $BR^5LZ_1$ K7-22 |
(23,9),R[2,1,1:2] $BR^2LRZ_2$
K5-11 |
(23,10),R[1,3:1] $BRL^3Z_1$
K5-09 |
(23,11),R[9:2] $BR^9Z_2$ |
(24,1),R[20:1] $BR^{20}Z_1$ $34^{19}3$ |
(24,5),R[2,1,2:1] $BR^2LR^2Z_1$
K6-007 |
(24,7),R[1,2,1:1] $RL^2RZ_1$
K5-05 |
(24,11),L[5:1] $BL^5Z_1$
K6-027 |
(25,1),R[21:1] $BR^{21}Z_1$ $34^{20}3$ |
(25,2),L[1,10:2] $BLR^{10}Z_2$ |
(25,3),R[1,6:2] $BRL^6Z_2$ |
(25,4),R[2,4:2] $BR^2L^4Z_2$ K7-03 |
(25,6),R[4,2:2] $BR^4L^2Z_2$ K7-03 |
(25,7),R[1,1,1,1:2] $BRLRLZ_2$
K5-06 |
(25,8),R[6,1:2] $BR^6LZ_2$ |
(25,9),L[3,1:2] $BL^3RZ_2$
K5-16 |
(25,11),L[1,3:2] $BLR^3Z_2$ |
(25,12),R[10:2] $BR^{10}Z_2$ |
(26,1),R[22:1] $BR^{22}Z_1$ $34^{22}3$ |
(26,3),L[1,6:1] $BLR^6Z_1$ |
(26,5),R[3,3:2] $BR^3L^3Z_2$ K7-04 |
(26,7),L[2,1,1:2] $BL^2RLZ_2$
K5-13 |
(26,9),R[6,1:1] $BR^6LZ_1$ |
(26,11),R[1,1,2:2] $BRLR^2Z_2$
K5-13 |
(27,1),R[23:1] $BR^{23}Z_1$ $34^{23}3$ |
(27,2),L[1,11:2] $BLR^{11}Z_2$ |
(27,4),R[1,1,4:1] $BRLR^4Z_1$ K7-05 |
(27,5),L[2,3:1] $BL^2R^3Z_1$
K6-014 |
(27,7),R[4,1,1:1] $BR^4LRZ_1$ K7-05 |
(27,8),L[1,2,1:2] $BLR^2LZ_2$
K5-12 |
(27,10),R[1,2,1:2] $BRL^2LZ_2$
K5-12 |
(27,11),R[3,2:1] $BR^3L^2Z_1$
K6-014 |
(27,13),R[11:2] $BR^{11}Z_2$ |
(28,1),R[24:1] $BR^{24}Z_1$ $34^{23}3$ |
(28,3),R[1,7:2] $BRL^7Z_2$ |
(28,5),L[1,1,3:2] $BLRL^3Z_2$
K6-016 |
(28,9),R[7,1:2] $BR^7LZ_2$ |
(28,11),R[3,1,1:2] $BR^3LRZ_2$
K6-016 |
(28,13),L[6:1] $BL^6Z_1$ K7-53 |
(29,1),R[25:1] $BR^{25}Z_1$ $34^{24}3$ |
(29,2),L[1,12:2] $BLR^{12}Z_2$ |
(29,3),L[1,7:1] $LR^7Z_1$ |
(29,4),R[2,5:2] $BR^2L^5Z_2$ |
(29,5),R[2,1,3:1] $BR^2LR^3Z_1$ |
(29,6),R[3,1,2:1] $BR^3LR^2Z_1$ |
(29,7),R[5,2:2] $BR^5L^2Z_2$ |
(29,8),L[1,1,1,1:1] $BLRLRZ_1$
K5-14 |
(29,9),L[4,1:1] $BL^4RZ_1$
K6-013 |
(29,10),R[7,1:1] $BR^7LZ_1$ |
(29,11),R[1,1,1,1:1] $BRLRLZ_1$
K5-14 |
(29,12),L[2,2:2] $BL^2R^2Z_2$
K5-17 |
(29,13),R[1,4:1] $BRL^4Z_1$
K6-013 |
(29,14),R[12:2] $BR^{12}Z_2$ |
(30,1),R[26:1] $BR^{26}Z_1$ $34^{26}3$ |
(30,7),L[3,2:1] $BL^3R^2Z_1$
K6-015 |
(30,11),L[1,2,1:1] $BLR^2LZ_1$
K5-18 |
(30,13),R[2,3:1] $BR^2L^3Z_1$
K6-015 |
(31,1),R[27:1] $BR^{27}Z_1$ $34^{27}3$ |
(31,2),L[1,13:2] $BLR^{13}Z_2$ |
(31,3),R[1,8:2] $BRL^8Z_2$ |
(31,4),R[1,1,5:1] $BRLR^5Z_1$ |
(31,5),R[3,4:2] $BR^3L^4Z_2$ |
(31,6),R[4,3:2] $BR^4L^3Z_2$ |
(31,7),R[1,2,2:1] $BRL^2R^2Z_1$
K6-006 |
(31,8),R[5,1,1:1] $BR^5LRZ_1$ |
(31,9),R[2,2,1:1] $BR^2L^2RZ_1$
K6-006 |
(31,10),R[8,1:2] $BR^8LZ_2$ |
(31,11),L[4,1:2] $BL^4RZ_2$
K6-028 |
(31,12),L[2,1,1:1] $BL^2RLZ_1$
K5-19 |
(31,13),L[1,1,2:1] $BLRL^2Z_1$ |
(31,14),L[1,4:2] $BLR^4Z_2$ |
(31,15),R[13:2] $BR^{13}Z_2$ |
(32,1),R[28:1] $BR^{28}Z_1$ $34^{27}3$ |
(32,3),L[1,8:1] $BLR^8Z_1$ |
(32,5),L[2,4:1] $BL^2R^4Z_1$ K7-24 |
(32,7),R[1,1,1,2:2] $BRLRL^2Z_2$
K6-008 |
(32,9),R[2,1,1,1:2] $BR^2LRLZ_2$
K6-008 |
(32,11),R[8,1:1] $BR^8LZ_1$ |
(32,13),R[4,2:1] $BR^4L^2Z_1$ K7-24 |
(32,15),L[7:1] $BL^7Z_1$ |
(33,1),R[29:1] $BR^{29}Z_1$ $34^{28}3$ |
(33,2),L[1,14:2] $BLR^{14}Z_2$ |
(33,4),R[2,6:2] $BR^2L^6Z_2$ |
(33,5),L[1,1,4:2] $BLRL^4Z_2$ K7-27 |
(33,7),L[2,1,2:2] $BL^2RL^2Z_2$
K6-020 |
(33,8),R[6,2:2] $BR^6L^2Z_2$ |
(33,10),R[1,3,1:1] $BRL^3RZ_1$
K6-005 |
(33,13),R[4,1,1:2] $BR^4LRZ_2$ K7-27 |
(33,14),R[2,1,2:2] $BR^2LR^2Z_2$
K6-020 |
(33,16),R[14:2] $BR^{14}Z_2$ |
(34,1),R[30:1] $BR^{30}Z_1$ $34^{29}3$ |
(34,3),R[1,9:2] $BRL^9Z_2$ |
(34,5),R[2,1,4:1] $BR^2LR^4Z_1$ |
(34,7),R[4,1,2:1] $BR^4LR^2Z_1$ |
(34,9),L[3,1,1:2] $BL^3RLZ_2$
K6-019 |
(34,11),R[9,1:2] $BR^9LZ_2$ |
(34,13),L[1,1,1,1:2] $BLRLRZ_2$
K5-20 |
(34,15),R[1,1,3:2] $BRLR^3Z_2$
K6-019 |
(35,1),R[31:1] $BR^{31}Z_1$ $34^{30}3$ |
(35,2),L[1,15:2] $BLR^{15}Z_2$ |
(35,3),L[1,9:1] $BLR^9Z_1$ |
(35,4),R[1,1,6:1] $BRLR^6Z_1$ |
(35,6),R[3,1,3:1] $BR^3LR^3Z_1$ |
(35,8),L[1,2,2:2] $BLR^2L^2Z_2$
K6-018 |
(35,9),R[6,1,1:1] $BR^6LRZ_1$ |
(35,11),L[5,1:1] $BL^5RZ_1$ K7-23 |
(35,12),R[9,1:1] $BR^9LZ_1$ |
(35,13),R[2,2,1:2] $BR^2L^2RZ_2$
K6-018 |
(35,16),R[1,5:1] $BRL^5Z_1$ K7-23 |
(35,17),R[15:2] $BR^{15}Z_2$ |
(36,1),R[32:1] $BR^{32}Z_1$ $34^{31}3$ |
(36,5),R[3,5:2] $BR^3L^5Z_2$ |
(36,7),R[5,3:2] $BR^5L^3Z_2$ |
(36,11),L[1,3,1:2] $BLR^3LZ_2$
K6-017 |
(36,13),R[1,3,1:2] $BRL^3RZ_2$
K6-017 |
(36,17),L[8:1] $BL^8Z_1$ |
(37,1),R[33:1] $BR^{33}Z_1$ $34^{32}3$ |
(37,2),L[1,16:2] $BLR^{16}Z_2$ |
(37,3),R[1,10:2] $BRL^{10}Z_2$ |
(37,4),R[2,7:2] $BR^2L^7Z_2$ |
(37,5),L[2,5:1] $BL^2R^5Z_1$ |
(37,6),R[4,4:2] $BR^4L^4Z_2$ |
(37,7),L[3,3:1] $BL^3R^3Z_1$ K7-26 |
(37,8),L[1,1,1,2:1] $BLRLR^2Z_1$
K6-022 |
(37,9),R[7,2:2] $BR^7L^2$ |
(37,10),R[1,2,1,1:2] $BRL^2RLZ_2$
K6-009 |
(37,11),R[1,1,2,1:2] $BRL^2RZ_2$ |
(37,12),R[10,1:2] $BR^{10}LZ_2$ |
(37,13),L[5,1:2] $BL^5RZ_2$ K7-54 |
(37,14),R[2,1,1,1:1] $BR^2LRZ_1$
K6-022 |
(37,15),R[5,2:1] $BR^5L^2Z_1$ |
(37,16),R[3,3:1] $BR^3L^3Z_1$ K7-26 |
(37,17),L[1,5:2] $BLR^5Z_1$ |
(37,18),R[16:2] $BR^{16}Z_2$ |
(38,1),R[34:1] $34^{33}3$ |
(38,3),L[1,10:1] |
(38,5),L[1,1,5:2] |
(38,7),R[1,2,3:1] K7-07 |
(38,9),L[4,2:1] K7-25 |
(38,11),R[3,2,1:1] K7-07 |
(38,13),R[10,1:1] |
(38,15),R[5,1,1:2] |
(38,17),R[2,4:1] K7-25 |
(39,1),R[35:1] $34^{34}3$ |
(39,2),L[1,17:2] |
(39,4),R[1,1,7:1] |
(39,5),R[2,1,5:1] |
(39,7),R[1,1,1,3:2] K7-43 K7-11 |
(39,8),R[5,1,2:1] |
(39,10),R[7,1,1:1] |
(39,11),R[3,1,1,1:2] K7-11 |
(39,14),L[1,3,1:1]
K6-030 |
(39,16),L[3,2:2]
K6-029 |
(39,17),L[2,3:2] |
(39,19),R[17:2] |
(40,1),R[36:1] $34^{37}3$ |
(40,3),R[1,11:2] |
(40,7),L[2,1,3:2] K7-32 |
(40,9),R[2,2,2:1] |
(40,11),R[1,1,1,1,1:1]
K6-010 |
(40,13),R[11,1:2] |
(40,17),R[3,1,2:2] K7-32 |
(40,19),L[9:1] |
(41,1),R[37:1] $34^{36}3$ |
(41,2),L[2,18:2] |
(41,3),L[1,11:1] |
(41,4),R[2,8:2] |
(41,5),R[3,6:2] |
(41,6),R[3,1,4:1] |
(41,7),R[4,1,3:1] |
(41,8),R[6,3:2] |
(41,9),R[2,1,1,2:2] |
(41,10),R[8,2:2] |
(41,11),L[1,2,1,1:1]
K6-024 |
(41,12),L[2,2,1:2]
K6-021 |
(41,13),L[6,1:1] |
(41,14),R[11,1:1] |
(41,15),R[1,1,2,1:1]
K6-024 |
(41,16),L[3,1,1:1]
K6-031 |
(41,17),R[1,2,2:2]
K6-021 |
(41,18),L[1,1,3:1] |
(41,19),R[1,6:1] |
(41,20),R[18:2] |
(42,1),R[38:1] $34^{37}3$ |
(42,5),L[2,6:1] |
(42,11),L[4,1,1:2] K7-31 |
(42,13),R[1,4,1:1] K7-06 |
(42,17),R[6,2:1] |
(42,19),R[1,1,4:2] K7-31 |
(43,1),R[39:1] $34^{38}3$ |
(43,2),L[2,19:2] |
(43,3),R[1,12:2] |
(43,4),R[1,1,8:1] |
(43,5),L[1,1,6:2] |
(43,6),R[4,5:2] |
(43,7),R[5,4:2] |
(43,8),L[1,2,3:2] K7-29 |
(43,9),L[3,1,2:2] K7-34 |
(43,10),R[1,3,2:1] K7-09 |
(43,11),R[8,1,1:1] |
(43,12),L[2,1,1,1:1]
K6-025 |
(43,13),R[2,3,1:1] K7-09 |
(43,14),R[12,1:2] |
(43,15),L[6,1:2] |
(43,16),R[3,2,1:2] K7-29 |
(43,17),R[6,1,1:2] |
(43,18),R[1,1,1,2:1]
K6-0025 |
(43,19),R[2,1,3:2] K7-34 |
(43,20),L[1,6:2] |
(43,21),R[19:2] |
(44,1),R[40:1] $34^{39}3$ |
(44,3),L[1,12:1] |
(44,5),R[2,1,6:1] |
(44,7),L[3,4:1] |
(44,9),R[6,1,2:1] |
(44,13),L[1,1,2,1:1]
K6-023 |
(44,15),R[12,1:1] |
(44,17),R[1,2,1,1:1]
K6-023 |
(44,19),R[4,3:1] |
(44,21),L[10:1] |
(45,1),R[41:1] $34^{40}3$ |
(45,2),L[2,20:2] |
(45,4),R[2,9:2] |
(45,7),R[1,2,4:1] |
(45,8),L[1,1,1,3:1] |
(45,11),R[9,2:2] |
(45,13),R[4,2,1:1] |
(45,14),L[1,4,1:2] K7-28 |
(45,16),R[1,4,1:2] K7-28 |
(45,17),R[3,1,1,1:1] |
(45,19),L[2,1,2:1]
K6-033 |
(45,22),R[20:2] |
(46,1),R[42:1] $34^{41}3$ |
(46,3),R[1,13:2] |
(46,5),R[3,7:2] |
(46,7),R[1,1,1,4:2] |
(46,9),R[7,3:2] |
(46,11),L[5,2:1] |
(46,13),R[4,1,1,1:2] |
(46,15),R[13,1:2] |
(46,17),L[2,2,1:1]
K6-032 |
(46,19),L[1,2,2:1] |
(46,21),R[2,5:1] |
(47,1),R[43:1] $34^{42}3$ |
(47,2),L[2,21:2] |
(47,3),L[1,13:1] |
(47,4),R[1,1,9:1] |
(47,5),L[2,7:1] |
(47,6),R[3,1,5:1] |
(47,7),L[2,1,4:2] |
(47,8),R[5,1,3:1] |
(47,9),L[4,3:1] |
(47,10),R[1,2,1,2:2] |
(47,11),L[1,3,2:2] K7-30 |
(47,12),R[9,1,1:1] |
(47,13),L[1,1,1,1,1:2]
K6-026 |
(47,14),R[2,1,2,1:2] |
(47,15),L[7,1:1] |
(47,16),R[13,1:1] |
(47,17),R[2,3,1:2] K7-30 |
(47,18),R[1,1,1,1,1:2]
K6-026 |
(47,19),R[7,2:1] |
(47,20),R[4,1,2:2] |
(47,21),R[3,4:1] |
(47,22),R[1,7:1] |
(47,23),R[21:2] |
(48,1),R[44:1] $34^{43}3$ |
(48,5),L[1,1,7:2] |
(48,7),R[4,1,4:1] |
(48,11),R[1,1,2,2:2] K7-13 |
(48,13),R[2,2,1,1:2] K7-13 |
(48,17),L[1,4,1:1] K7-57 |
(48,19),R[7,1,1:2] |
(48,23),L[11:1] |
(49,1),R[45:1] $34^{44}3$ |
(49,2),L[2,22:2] |
(49,3),R[1,14:2] |
(49,4),R[2,10:2] |
(49,5),R[2,1,7:1] |
(49,6),R[4,6:2] |
(49,8),R[6,4:2] |
(49,9),R[2,2,3:1] |
(49,10),R[7,1,2:1] |
(49,11),R[3,2,2:1] |
(49,12),R[10,2:2] |
(49,13),R[1,3,1,1:2] K7-12 |
(49,15),R[1,1,3,1:2] |
(49,16),R[14,1:2] |
(49,17),L[7,1:2] |
(49,18),L[1,1,2,1:2]
K6-034 |
(49,19),L[1,2,1,1:2]
K6-034 |
(49,20),L[4,2:2] K7-55 |
(49,22),L[2,4:2] |
(49,23),L[1,7:2] |
(49,24),R[22:2] |
(50,1),R[46:1] $34^{45}3$ |
(50,3),L[1,14:1] |
(50,7),R[5,5:2] |
(50,9),R[2,1,1,3:2] |
(50,11),R[3,1,1,2:2] |
(50,13),L[5,1,1:2] |
(50,17),R[14,1:1] |
(50,19),L[2,1,1,1:2]
K6-035 |
(50,21),L[1,1,1,2:2] |
(50,23),R[1,1,5:2] |
(51,1),R[47:1] $34^{46}3$ |
(51,2),L[2,23:2] |
(51,4),R[1,1,10:1] |
(51,5),R[3,8:2] |
(51,7),L[3,5:1] |
(51,8),L[1,2,4:2] |
(51,10),R[8,3:2] |
(51,11),R[1,1,1,1,2:1] K7-17 |
(51,13),R[10,1,1:1] |
(51,14),R[2,1,1,1,1:1] K7-17 |
(51,16),R[1,5,1:1] |
(51,19),R[4,2,1:2] |
(51,20),L[4,1,1:1] K7-58 |
(51,22),R[5,3:1] |
(51,23),L[1,1,4:1] |
(51,25),R[23:2] |
(52,1),R[48:1] $34^{47}3$ |
(52,3),R[1,15:2] |
(52,5),L[2,8:1] |
(52,7),R[1,2,5:1] |
(52,9),L[3,1,3:2] |
(52,11),L[1,2,1,2:1] K7-41 |
(52,15),R[5,2,1:1] |
(52,17),R[15,1:2] |
(52,19),R[2,1,2,1:1] K7-41 |
(52,21),R[8,2:1] |
(52,23),R[3,1,3:2] |
(52,25),L[12:1] |
(53,1),R[49:1] $34^{48}3$ |
(53,2),L[2,24:2] |
(53,3),L[1,15:1] |
(53,4),R[2,11:2] |
(53,5),L[1,1,8:2] |
(53,6),R[3,1,6:1] |
(53,7),R[1,1,1,5:2] |
(53,8),L[1,1,1,4:1] |
(53,9),R[6,1,3:1] |
(53,10),R[1,3,3:1] |
(53,11),L[4,1,2:2] |
(53,12),L[2,2,2:2] K7-36 |
(53,13),R[11,2:2] |
(53,14),L[1,3,1,1:1] K7-39 |
(53,15),R[5,1,1,1:2] |
(53,16),R[3,3,1:1] |
(53,17),L[8,1:1] |
(53,18),R[15,1:1] |
(53,19),R[1,1,3,1:1] K7-39 |
(53,20),R[4,1,1,1:1] |
(53,21),R[8,1,1:2] |
(53,22),R[2,2,2:2] K7-36 |
(53,23),L[3,3:2] K7-56 |
(53,24),R[2,1,4:2] |
(53,25),R[1,8:1] |
(53,26),R[24:2] |
(54,1),R[50:1] $34^{49}3$ |
(54,5),R[2,1,8:1] |
(54,7),L[2,1,5:2] |
(54,11),R[8,1,2:1] |
(54,13),L[6,2:1] |
(54,17),L[1,5,1:2] |
(54,19),R[1,5,1:2] |
(54,23),R[5,1,2:2] |
(54,25),R[2,6:1] |
(55,1),R[51:1] $34^{50}3$ |
(55,2),L[2,25:2] |
(55,3),R[1,16:2] |
(55,4),R[1,1,11:1] |
(55,6),R[4,7:2] |
(55,7),R[4,1,5:1] |
(55,8),R[5,1,4:1] |
(55,9),R[7,4:2] |
(55,12),L[2,1,1,2:1] K7-44 |
(55,13),R[1,4,2:1] |
(55,14),R[11,1,1:1] |
(55,16),L[3,2,1:2] K7-35 |
(55,17),R[2,4,1:1] |
(55,18),R[16,1:2] |
(55,19),L[8,1:2] |
(55,21),L[1,1,1,1,1:1]
K6-036 |
(55,23),R[2,1,1,2:1] K7-44 |
(55,24),R[1,2,3:2] K7-35 |
(55,26),L[1,8:2] |
(55,27),R[25:2] |
(56,1),R[52:1] $34^{55}3$ |
(56,3),L[1,16:1] |
(56,5),R[3,9:2] |
(56,9),L[4,4:1] |
(56,11),R[9,3:2] |
(56,13),R[2,3,2:1] |
(56,15),R[1,1,2,1,1:1] K7-19 |
(56,17),L[2,3,1:2] K7-33 |
(56,19),R[16,1:1] |
(56,23),R[1,3,2:2] K7-33 |
(56,25),R[4,4:1] |
(56,27),L[13:1] |
(57,1),R[53:1] $34^{52}3$ |
(57,2),L[2,26:2] |
(57,4),R[2,12:2] |
(57,5),L[2,9:1] |
(57,7),R[5,6:2] |
(57,8),R[6,5:2] |
(57,10),R[1,2,1,3:2] |
(57,11),L[5,3:1] |
(57,13),L[1,1,2,2:1] K7-40 |
(57,14),R[12,2:2] |
(57,16),L[3,1,1,1:1] |
(57,17),R[3,1,2,1:2] |
(57,20),L[1,5,1:1] |
(57,22),R[2,2,1,1:1] K7-40 |
(57,23),R[9,2:1] |
(57,25),R[1,1,1,3:1] |
(57,26),R[3,5:1] |
(57,28),R[26:2] |
(58,1),R[54:1] $34^{53}3$ |
(58,3),R[1,17:2] |
(58,5),L[1,1,9:2] |
(58,7),L[3,6:1] |
(58,9),R[2,2,4:1] |
(58,11),L[1,3,3:2] |
(58,13),R[4,2,2:1] |
(58,15),L[6,1,1:2] |
(58,17),R[1,2,2,1:2] K7-16 |
(58,19),R[17,1:2] |
(58,21),R[3,3,1:2] |
(58,23),R[9,1,1:2] |
(58,25),R[6,3:1] |
(58,27),R[1,1,6:2] |
(59,1),R[55:1] $34^{54}3$ |
(59,2),L[2,27:2] |
(59,3),L[1,17:1] |
(59,4),R[1,1,12:1] |
(59,5),R[2,1,9:1] |
(59,6),R[3,1,7:1] |
(59,7),R[1,2,6:1] |
(59,8),L[1,2,5:2] |
(59,9),R[2,1,1,4:2] |
(59,10),R[7,1,3:1] |
(59,11),R[1,1,2,3:2] |
(59,12),R[9,1,2:1] |
(59,13),R[4,1,1,2:2] |
(59,14),L[1,4,2:2] |
(59,15),R[12,1,1:1] |
(59,16),R[3,2,1,1:2] |
(59,17),R[6,2,1:1] |
(59,18),L[1,1,3,1:1] |
(59,19),L[9,1:1] |
(59,20),R[17,1:1] |
(59,21),R[2,4,1:2] |
(59,22),R[5,2,1:2] |
(59,23),R[1,3,1,1:1] |
(59,24),L[5,2:2] |
(59,25),L[3,1,2:1] K7-08 K7-61 |
(59,26),L[2,1,3:1] |
(59,27),L[2,5:2] |
(59,28),R[1,9:1] |
(59,29),R[27:2] |
(60,1),R[56:1] $34^{55}3$ |
(60,7),R[1,1,1,6:2] |
(60,11),R[3,2,3:1] |
(60,13),L[1,1,1,1,2:2] K7-47 |
(60,17),R[6,1,1,1:2] |
(60,19),R[1,6,1:1] |
(60,23),R[2,1,1,1,1:2] K7-47 |
(60,29),L[14:1] |
(61,1),R[57:1] $34^{56}3$ |
(61,2),L[3,28:2] |
(61,3),R[1,18:2] |
(61,4),R[2,13:2] |
(61,5),R[3,10:2] |
(61,6),R[4,8:2] |
(61,7),L[2,1,6:2] |
(61,8),L[1,1,1,5:1] |
(61,9),L[3,1,4:2] |
(61,10),R[8,4:2] |
(61,11),R[3,1,1,3:2] |
(61,12),R[10,3:2] |
(61,13),R[2,2,1,2:2] |
(61,14),R[2,1,2,2:2] |
(61,15),R[13,2:2] |
(61,16),R[1,4,1,1:2] |
(61,17),R[1,2,1,1,1:1] K7-18 |
(61,18),R[1,1,1,2,1:1] |
(61,19),R[1,1,4,1:2] |
(61,20),R[18,1:2] |
(61,21),L[9,1:2] |
(61,22),L[2,3,1:1] K7-59 |
(61,23),R[5,1,1,1:1] |
(61,24),L[5,1,1:1] |
(61,25),L[1,3,2:1] |
(61,26),R[6,1,2:2] |
(61,27),R[4,1,3:2] |
(61,28),L[1,1,5:1] |
(61,29),L[1,9:2] |
(61,30),R[28:2] |
(62,1),R[58:1] $34^{57}3$ |
(62,3),L[1,18:1] |
(62,5),L[2,10:1] |
(62,7),R[4,1,6:1] |
(62,9),R[6,1,4:1] |
(62,11),R[1,1,1,1,3:1] K7-37 |
(62,13),R[1,3,1,2:2] |
(62,15),L[7,2:1] |
(62,17),R[3,1,1,1,1:1] K7-37 |
(62,19),R[2,1,3,1:2] |
(62,21),R[18,1:1] |
(62,23),L[3,2,1:1] K7-60 |
(62,25),R[10,2:1] |
(62,27),L[1,2,3:1] |
(62,29),R[2,7:1] |
(63,1),R[59:1] $34^{58}3$ |
(63,2),L[3,29:2] |
(63,4),R[1,1,13:1] |
(63,5),L[1,1,10:2] |
(63,8),R[5,1,5:1] |
(63,10),R[1,3,4:1] |
(63,11),L[1,2,1,3:1] |
(63,13),L[5,1,2:2] |
(63,16),R[13,1,1:1] |
(63,17),L[2,2,1,1:1] K7-46 |
(63,19),R[4,3,1:1] |
(63,20),L[1,6,1:2] |
(63,22),R[1,6,1:2] |
(63,23),R[3,1,2,1:1] |
(63,25),R[10,1,1:2] |
(63,26),R[1,1,2,2:1] K7-46 |
(63,29),R[2,1,5:2] |
(63,31),R[29:2] |
(64,1),R[60:1] $34^{59}3$ |
(64,3),R[1,19:2] |
(64,5),R[2,1,10:1] |
(64,7),R[5,7:2] |
(64,9),R[7,5:2] |
(64,11),L[4,1,3:2] |
(64,13),R[10,1,2:1] |
(64,15),R[1,1,3,2:2] |
(64,17),R[2,3,1,1:2] |
(64,19),L[2,1,2,1:1] K7-45 |
(64,21),R[19,1:2] |
(64,23),L[1,1,3,1:2] K7-63 |
(64,25),L[1,3,1,1:2] K7-63 |
(64,27),R[1,2,1,2:1] K7-45 |
(64,29),R[3,1,4:2] |
(64,31),L[15:1] |
(65,1),R[61:1] $34^{60}3$ |
(65,2),L[3,30:2] |
(65,3),L[1,19:1] |
(65,4),R[2,14:2] |
(65,6),R[3,1,8:1] |
(65,7),L[3,7:1] |
(65,8),R[6,6:2] |
(65,9),L[4,5:1] |
(65,11),R[8,1,3:1] |
(65,12),L[2,2,3:2] |
(65,14),R[2,1,1,1,2:1] |
(65,16),R[14,2:2] |
(65,17),L[1,4,1,1:1] |
(65,18),R[1,1,1,1,1,1:2] K7-20 |
(65,19),L[1,2,2,1:1] K7-42 |
(65,21),L[10,1:1] |
(65,22),R[19,1:1] |
(65,23),R[1,1,4,1:1] |
(65,24),R[1,2,2,1:1] K7-42 |
(65,27),R[3,2,2:2] |
(65,28),R[7,3:1] |
(65,29),R[5,4:1] |
(65,31),R[1,10:1] |
(65,32),R[30:2] |
(66,1),R[62:1] $34^{61}3$ |
(66,5),R[3,11:2] |
(66,7),R[1,2,7:1] |
(66,13),R[11,3:2] |
(66,17),L[7,1,1:2] |
(66,19),R[7,2,1:1] |
(66,23),L[1,6,1:1] |
(66,25),L[3,1,1,1:2] K7-65 |
(66,29),L[1,1,1,3:2] |
(66,31),R[1,1,7:2] |
(67,1),R[63:1] $34^{62}3$ |
(67,2),L[3,31:2] |
(67,3),R[1,20:2] |
(67,4),R[1,1,14:1] |
(67,5),L[2,11:1] |
(67,6),R[4,9:2] |
(67,7),R[1,1,1,7:2] |
(67,8),L[1,2,6:2] |
(67,9),R[2,2,5:1] |
(67,10),R[1,2,1,4:2] |
(67,11),R[9,4:2] |
(67,12),L[2,1,1,3:1] |
(67,13),L[6,3:1] |
(67,14),L[1,3,1,2:1] |
(67,15),R[5,2,2:1] |
(67,16),R[1,5,2:1] |
(67,17),R[14,1,1:1] |
(67,18),L[1,1,2,1,1:2] K7-49 |
(67,19),R[7,1,1,1:2] |
(67,20),R[4,1,2,1:2] |
(67,21),R[2,5,1:1] |
(67,22),R[20,1:2] |
(67,23),L[10,1:2] |
(67,24),R[2,1,3,1:1] |
(67,25),R[6,2,1:2] |
(67,26),R[1,1,2,1,1:2] K7-49 |
(67,27),R[11,2:1] |
(67,28),R[3,1,1,2:1] |
(67,29),L[4,3:2] |
(67,30),L[3,4:2] |
(67,31),R[3,6:1] |
(67,32),L[1,10:2] |
(67,33),R[31:2] |
(68,1),R[64:1] $34^{63}3$ |
(68,3),L[1,20:1] |
(68,5),L[1,1,11:2] |
(68,7),L[2,1,7:2] |
(68,9),R[2,1,1,5:2] |
(68,11),L[5,4:1] |
(68,13),R[1,4,3:1] |
(68,15),R[5,1,1,2:2] |
(68,19),L[1,2,1,1,1:2] K7-50 |
(68,21),R[3,4,1:1] |
(68,23),R[20,1:1] |
(68,25),R[1,1,1,2,1:2] K7-50 |
(68,27),R[11,1,1:2] |
(68,29),R[7,1,2:2] |
(68,31),R[4,5:1] |
(68,33),L[16:1] |
(69,1),R[65:1] $34^{64}3$ |
(69,2),L[3,32:2] |
(69,4),R[2,15:2] |
(69,5),R[2,1,11:1] |
(69,7),R[4,1,7:1] |
(69,8),L[1,1,1,6:1] |
(69,10),R[7,1,4:1] |
(69,11),L[1,3,4:2] |
(69,13),R[2,3,3:1] |
(69,14),R[11,1,2:1] |
(69,16),R[3,3,2:1] |
(69,17),R[15,2:2] |
(69,19),L[2,1,1,1,1:2] K7-51 |
(69,20),L[4,2,1:2] |
(69,22),R[1,7,1:1] |
(69,25),R[4,3,1:2] |
(69,26),R[6,1,1,1:1] |
(69,28),L[6,2:2] |
(69,29),R[1,1,1,1,2:2] K7-51 |
(69,31),R[1,2,4:2] |
(69,32),L[2,6:2] |
(69,34),R[32:2] |
(70,1),R[66:1] $34^{65}3$ |
(70,3),R[1,21:2] |
(70,9),L[3,1,5:2] |
(70,11),R[1,1,2,4:2] |
(70,13),L[1,1,2,3:1] |
(70,17),L[8,2:1] |
(70,19),R[4,2,1,1:2] |
(70,23),R[21,1:2] |
(70,27),R[3,2,1,1:1] |
(70,29),L[2,2,2:1] K7-10 K7-62 |
(70,31),R[5,1,3:2] |
(70,33),R[2,8:1] |
(71,1),R[67:1] $34^{66}3$ |
(71,2),L[3,33:2] |
(71,3),L[1,21:1] |
(71,4),R[1,1,15:1] |
(71,5),R[3,12:2] |
(71,6),R[3,1,9:1] |
(71,7),R[5,8:2] |
(71,8),R[5,1,6:1] |
(71,9),R[6,1,5:1] |
(71,10),R[8,5:2] |
(71,11),R[3,2,4:1] |
(71,12),R[9,1,3:1] |
(71,13),R[4,2,3:1] |
(71,14),R[12,3:2] |
(71,15),R[1,1,2,1,2:1] |
(71,16),L[3,2,2:2] |
(71,17),L[1,5,2:2] |
(71,18),R[15,1,1:1] |
(71,19),R[2,1,2,1,1:1] |
(71,20),L[4,1,1,1:1] |
(71,21),L[1,1,1,2,1:2] K7-48 |
(71,22),L[2,4,1:2] |
(71,23),L[11,1:1] |
(71,24),R[21,1:1] |
(71,25),R[2,5,1:2] |
(71,26),L[2,1,2,1:2] K7-14 K7-67 |
(71,27),R[1,2,1,1,1:2] K7-48 |
(71,28),L[6,1,1:1] |
(71,29),R[1,4,2:2] |
(71,30),L[1,2,1,2:2] |
(71,31),R[2,2,3:2] |
(71,32),R[1,1,1,4:1] |
(71,33),L[1,1,6:1] |
(71,34),R[1,11:1] |
(71,35),R[33:2] |
(72,1),R[68:1] $34^{67}3$ |
(72,5),L[2,12:1] |
(72,7),L[3,8:1] |
(72,11),R[3,1,1,4:2] |
(72,13),R[4,1,1,3:2] |
(72,17),R[2,4,2:1] |
(72,19),R[1,1,3,1,1:1] |
(72,23),L[1,7,1:2] |
(72,25),R[1,7,1:2] |
(72,29),R[12,2:1] |
(72,31),R[8,3:1] |
(72,35),L[17:1] |
(73,1),R[69:1] $34^{68}3$ |
(73,2),L[3,34:2] |
(73,3),R[1,22:2] |
(73,4),R[2,16:2] |
(73,5),L[1,1,12:2] |
(73,6),R[4,10:2] |
(73,7),R[1,2,8:1] |
(73,8),R[6,7:2] |
(73,9),R[7,6:2] |
(73,10),R[1,3,5:1] |
(73,11),R[1,1,1,1,4:1] |
(73,12),R[10,4:2] |
(73,13),L[1,1,1,1,3:2] |
(73,14),L[1,4,3:2] |
(73,15),L[6,1,2:2] |
(73,16),L[3,1,1,2:1] |
(73,17),L[2,3,2:2] |
(73,18),R[16,2:2] |
(73,19),R[1,5,1,1:2] |
(73,20),R[4,1,1,1,1:1] |
(73,21),R[8,2,1:1] |
(73,22),R[5,3,1:1] |
(73,23),R[1,1,5,1:2] |
(73,24),R[22,1:2] |
(73,25),L[11,1:2] |
(73,26),R[3,4,1:2] |
(73,27),L[1,2,2,1:2] K7-64 |
(73,28),R[3,1,1,1,1:2] |
(73,29),R[12,1,1:2] |
(73,30),R[2,3,2:2] |
(73,31),L[4,1,2:1] |
(73,32),R[2,1,1,3:1] |
(73,33),L[2,1,4:1] |
(73,34),R[2,1,6:2] |
(73,35),L[1,11:2] |
(73,36),R[34:2] |
(74,1),R[70:1] $34^{69}3$ |
(74,3),L[1,22:1] |
(74,5),R[2,1,12:1] |
(74,7),R[1,1,1,8:2] |
(74,9),L[4,6:1] |
(74,11),L[1,2,1,4:1] |
(74,13),R[2,2,1,3:2] |
(74,15),R[12,1,2:1] |
(74,17),R[3,1,2,2:2] |
(74,19),L[8,1,1:2] |
(74,21),R[8,1,1,1:2] |
(74,23),L[1,1,4,1:1] |
(74,25),R[22,1:1] |
(74,27),R[4,1,2,1:1] |
(74,29),R[1,4,1,1:1] |
(74,31),L[2,1,1,2:2] K7-15 ,rr>K7-68 |
(74,33),R[6,4:1] |
(74,35),R[1,1,8:2] |
(75,1),R[71:1] $34^{70}3$ |
(75,2),L[3,35:2] |
(75,4),R[1,1,16:1] |
(75,7),L[2,1,8:2] |
(75,8),L[1,2,7:2] |
(75,11),L[4,1,4:2] |
(75,13),R[1,3,1,3:2] |
(75,14),R[2,1,2,3:2] |
(75,16),R[3,2,1,2:2] |
(75,17),R[1,2,2,2:2] |
(75,19),R[16,1,1:1] |
(75,22),R[2,2,2,1:2] |
(75,23),R[3,1,3,1:2] |
(75,26),L[1,7,1:1] |
(75,28),R[7,2,1:2] |
(75,29),L[2,2,1,1:2] K7-66 |
(75,31),L[1,1,2,2:2] |
(75,32),R[8,1,2:2] |
(75,34),R[4,1,4:2] |
(75,37),R[35:2] |
(76,1),R[72:1] $34^{71}3$ |
(76,3),R[1,23:2] |
(76,5),R[3,13:2] |
(76,7),R[4,1,8:1] |
(76,9),R[2,2,6:1] |
(76,11),R[8,1,4:1] |
(76,13),L[5,1,3:2] |
(76,15),R[13,3:2] |
(76,17),R[6,2,2:1] |
(76,21),L[1,1,1,1,1,1:1] K7-52 |
(76,23),L[3,3,1:2] |
(76,25),R[23,1:2] |
(76,27),L[2,4,1:1] |
(76,29),R[1,1,1,1,1,1:1] K7-52 |
(76,31),L[1,4,2:1] |
(76,33),R[1,3,3:2] |
(76,35),R[3,1,5:2] |
(76,37),L[18:1] |
(77,1),R[73:1] $34^{72}3$ |
(77,2),L[3,36:2] |
(77,3),L[1,23:1] |
(77,4),R[2,17:2] |
(77,5),L[2,13:1] |
(77,6),R[3,1,10:1] |
(77,8),L[1,1,1,7:1] |
(77,9),R[2,1,1,6:2] |
(77,10),R[1,2,1,5:2] |
(77,12),L[2,2,4:2] |
(77,13),R[10,1,3:1] |
(77,15),L[7,3:1] |
(77,16),R[1,4,1,2:2] |
(77,17),R[6,1,1,2:2] |
(77,18),L[1,1,3,2:1] |
(77,19),R[17,2:2] |
(77,20),L[1,5,1,1:1] |
(77,23),R[5,1,2,1:2] |
(77,24),R[2,1,4,1:2] |
(77,25),L[12,1:1] |
(77,26),R[23,1:1] |
(77,27),R[1,1,5,1:1] |
(77,29),R[7,1,1,1:1] |
(77,30),R[2,3,1,1:1] |
(77,31),R[13,2:1] |
(77,32),R[4,2,2:2] |
(77,34),L[3,1,3:1] |
(77,36),R[3,7:1] |
(77,37),R[1,12:1] |
(77,38),R[36:2] |
(78,1),R[74:1] $34^{73}3$ |
(78,5),L[1,1,13:2] |
(78,7),R[5,9:2] |
(78,11),R[9,5:2] |
(78,17),R[1,2,1,1,2:1] |
(78,19),L[9,2:1] |
(78,23),R[2,1,1,2,1:1] |
(78,25),R[1,8,1:1] |
(78,29),L[4,2,1:1] |
(78,31),R[13,1,1:2] |
(78,35),L[1,2,4:1] |
(78,37),R[2,9:1] |
(79,1),R[75:1] $34^{74}3$ |
(79,2),L[3,37:2] |
(79,3),R[1,24:2] |
(79,4),R[1,1,17:1] |
(79,5),R[2,1,13:1] |
(79,6),R[4,11:2] |
(79,7),L[3,9:1] |
(79,8),R[5,1,7:1] |
(79,9),L[3,1,6:2] |
(79,10),R[7,1,5:1] |
(79,11),L[5,5:1] |
(79,12),L[2,1,1,4:1] |
(79,13),R[11,4:2] |
(79,14),R[2,1,1,1,3:1] |
(79,15),R[1,1,3,3:2] |
(79,16),R[13,1,2:1] |
(79,17),R[3,1,1,1,2:1] |
(79,18),R[1,1,1,2,2:1] |
(79,19),R[1,6,2:1] |
(79,20),R[17,1,1:1] |
(79,21),R[3,3,1,1:2] |
(79,22),R[2,2,1,1,1:1] |
(79,23),R[1,3,2,1:2] |
(79,24),R[1,2,3,1:2] |
(79,25),R[2,6,1:1] |
(79,26),R[24,1:2] |
(79,27),L[12,1:2] |
(79,28),L[1,1,4,1:2] |
(79,29),L[1,1,1,2,1:1] K7-69 |
(79,30),L[1,2,1,1,1:1] K7-69 |
(79,31),L[1,4,1,1:2] |
(79,32),L[7,2:2] |
(79,33),R[4,1,1,2:1] |
(79,34),R[9,3:1] |
(79,35),R[6,1,3:2] |
(79,36),R[5,5:1] |
(79,37),L[2,7:2] |
(79,38),L[1,12:2] |
(79,39),R[37:2] |
(80,1),R[76:1] $34^{75}3$ |
(80,3),L[1,24:1] |
(80,7),R[1,2,9:1] |
(80,9),R[6,1,6:1] |
(80,11),L[1,3,5:2] |
(80,13),L[6,4:1] |
(80,17),L[2,2,1,2:1] |
(80,19),R[1,1,4,2:2] |
(80,21),R[2,4,1,1:2] |
(80,23),R[9,2,1:1] |
(80,27),R[24,1:1] |
(80,29),R[5,3,1:2] |
(80,31),L[1,1,2,1,1:1] K7-70 |
(80,33),R[2,1,2,2:1] |
(80,37),R[4,6:1] |
(80,39),L[19:1] |
(81,1),R[77:1] $34^{76}3$ |
(81,2),L[4,38:2] |
(81,4),R[2,18:2] |
(81,5),R[3,14:2] |
(81,7),R[1,1,1,9:2] |
(81,8),R[6,8:2] |
(81,10),R[8,6:2] |
(81,11),R[1,1,2,5:2] |
(81,13),R[1,4,4:1] |
(81,14),L[1,3,1,3:1] |
(81,16),R[14,3:2] |
(81,17),R[2,3,1,2:2] |
(81,19),R[2,1,3,2:2] |
(81,20),R[18,2:2] |
(81,22),R[5,2,1,1:2] |
(81,23),R[9,1,1,1:2] |
(81,25),R[4,4,1:1] |
(81,26),L[1,8,1:2] |
(81,28),R[1,8,1:2] |
(81,29),R[3,1,3,1:1] |
(81,31),L[2,1,1,1,1:1] K7-71 |
(81,32),L[7,1,1:1] |
(81,34),L[1,1,1,1,2:1] |
(81,35),L[5,3:2] |
(81,37),L[3,5:2] |
(81,38),L[1,1,7:1] |
(81,40),R[38:2] |
(82,1),R[78:1] $34^{77}3$ |
(82,3),R[1,25:2] |
(82,5),L[2,14:1] |
(82,7),L[2,1,9:2] |
(82,9),R[7,7:2] |
(82,11),R[3,2,5:1] |
(82,13),R[2,3,4:1] |
(82,15),R[5,2,3:1] |
(82,17),L[1,4,1,2:1] |
(82,19),R[4,3,2:1] |
(82,21),L[9,1,1:2] |
(82,23),R[1,3,1,1,1:1] K7-38 |
(82,25),R[1,1,1,3,1:1] |
(82,27),R[25,1:2] |
(82,29),R[2,1,4,1:1] |
(82,31),L[4,1,1,1:2] |
(82,33),R[14,2:1] |
(82,35),R[9,1,2:2] |
(82,37),L[1,1,1,4:2] |
(82,39),R[1,1,9:2] |
(83,1),R[79:1] $34^{78}3$ |
(83,2),L[4,39:2] |
(83,3),L[1,25:1] |
(83,4),R[1,1,18:1] |
(83,5),L[1,1,14:2] |
(83,6),R[3,1,11:1] |
(83,7),R[4,1,9:1] |
(83,8),L[1,2,8:2] |
(83,9),L[4,7:1] |
(83,10),R[1,3,6:1] |
(83,11),R[3,1,1,5:2] |
(83,12),R[9,1,4:1] |
(83,13),L[1,1,2,4:1] |
(83,14),R[11,1,3:1] |
(83,15),R[5,1,1,3:2] |
(83,16),R[1,5,3:1] |
(83,17),L[7,1,2:2] |
(83,18),R[1,1,1,1,1,2:2] |
(83,19),L[2,1,2,2:1] |
(83,20),L[1,6,2:2] |
(83,21),R[18,1,1:1] |
(83,22),L[2,3,1,1:1] |
(83,23),R[2,1,1,1,1,1:2] |
(83,24),L[5,2,1:2] |
(83,25),R[6,3,1:1] |
(83,26),R[3,5,1:1] |
(83,27),L[13,1:1] |
(83,28),R[25,1:1] |
(83,29),R[2,6,1:2] |
(83,30),L[3,3,1:1] |
(83,31),R[8,2,1:2] |
(83,32),R[4,2,1,1:1] |
(83,33),R[14,1,1:2] |
(83,34),R[1,1,3,2:1] |
(83,35),R[2,2,1,2:1] |
(83,36),L[1,3,3:1] |
(83,37),R[7,4:1] |
(83,38),R[1,2,5:2] |
(83,39),R[2,1,7:2] |
(83,40),R[1,13:1] |
(83,41),R[39:2] |
(84,1),R[80:1] $34^{79}3$ |
(84,5),R[2,1,14:1] |
(84,11),R[1,1,1,1,5:1] |
(84,13),R[4,2,4:1] |
(84,17),R[14,1,2:1] |
(84,19),L[1,2,2,2:1] |
(84,23),R[5,1,1,1,1:1] |
(84,25),L[3,1,2,1:1] |
(84,29),L[1,8,1:1] |
(84,31),R[2,2,2,1:1] |
(84,37),R[1,2,1,3:1] |
(84,41),L[20:1] |
(85,1),R[81:1] $34^{80}3$ |
(85,2),L[4,40:2] |
(85,3),R[1,26:2] |
(85,4),R[2,19:2] |
(85,6),R[4,12:2] |
(85,7),R[5,10:2] |
(85,8),L[1,1,1,8:1] |
(85,9),R[2,2,7:1] |
(85,11),L[1,2,1,5:1] |
(85,12),R[10,5:2] |
(85,13),R[4,1,1,4:2] |
(85,14),R[12,4:2] |
(85,16),R[3,3,3:1] |
(85,18),L[1,1,2,1,2:2] |
(85,19),R[7,2,2:1] |
(85,21),R[19,2:2] |
(85,22),R[1,6,1,1:2] |
(85,23),L[3,2,1,1:1] |
(85,24),L[5,1,1,1:1] |
(85,26),L[2,1,3,1:1] |
(85,27),R[1,1,6,1:2] |
(85,28),R[26,1:2] |
(85,29),L[13,1:2] |
(85,31),R[5,1,2,1:1] |
(85,32),R[8,1,1,1:1] |
(85,33),R[2,1,2,1,1:2] |
(85,36),R[1,3,1,2:1] |
(85,37),R[1,1,2,3:1] |
(85,38),L[4,4:2] |
(85,39),R[1,1,1,5:1] |
(85,41),L[1,13:2] |
(85,42),R[40:2] |
(86,1),R[82:1] $34^{81}3$ |
(86,3),L[1,26:1] |
(86,5),R[3,15:2] |
(86,7),L[3,10:1] |
(86,9),R[2,1,1,7:2] |
(86,11),L[4,1,5:2] |
(86,13),L[1,1,1,1,4:2] |
(86,15),R[1,1,2,1,3:1] |
(86,17),R[15,3:2] |
(86,19),R[7,1,1,2:2] |
(86,21),L[10,2:1] |
(86,23),R[3,1,2,1,1:1] |
(86,25),L[1,3,2,1:1] |
(86,27),L[2,5,1:2] |
(86,29),R[26,1:1] |
(86,31),R[1,2,3,1:1] |
(86,33),R[4,1,1,1,1:2] |
(86,35),R[1,5,2:2] |
(86,37),R[10,3:1] |
(86,39),R[5,1,4:2] |
(86,41),R[2,10:1] |
(87,1),R[83:1] $34^{82}3$ |
(87,2),L[4,41:2] |
(87,4),R[1,1,19:1] |
(87,5),L[2,15:1] |
(87,7),R[1,2,10:1] |
(87,8),R[5,1,8:1] |
(87,10),R[1,2,1,6:2] |
(87,11),R[8,1,5:1] |
(87,13),R[2,2,1,4:2] |
(87,14),L[1,4,4:2] |
(87,16),L[3,2,3:2] |
(87,17),L[8,3:1] |
(87,19),L[1,2,1,1,2:2] |
(87,20),R[4,1,2,2:2] |
(87,22),R[19,1,1:1] |
(87,23),L[1,1,3,1,1:2] |
(87,25),R[10,2,1:1] |
(87,26),R[6,1,2,1:2] |
(87,28),R[1,9,1:1] |
(87,31),R[4,4,1:2] |
(87,32),R[2,1,1,2,1:2] |
(87,34),R[1,1,3,1,1:2] |
(87,35),R[15,2:1] |
(87,37),L[5,1,2:1] |
(87,38),R[3,2,3:2] |
(87,40),L[2,1,5:1] |
(87,41),R[3,8:1] |
(87,43),R[41:2] |
(88,1),R[84:1] $34^{83}3$ |
(88,3),R[1,27:2] |
(88,5),L[1,1,15:2] |
(88,7),R[1,1,1,10:2] |
(88,9),L[3,1,7:2] |
(88,13),R[1,3,1,4:2] |
(88,15),L[6,1,3:2] |
(88,17),L[1,5,3:2] |
(88,19),L[2,1,1,1,2:2] |
(88,21),R[2,5,2:1] |
(88,23),R[1,1,4,1,1:1] |
(88,25),R[10,1,1,1:2] |
(88,27),R[4,1,3,1:2] |
(88,29),R[27,1:2] |
(88,31),R[3,5,1:2] |
(88,35),R[15,1,1:2] |
(88,37),R[2,1,1,1,2:2] |
(88,39),R[7,1,3:2] |
(88,41),R[3,1,6:2] |
(88,43),L[21:1] |
(89,1),R[85:1] $34^{84}3$ |
(89,2),L[4,42:2] |
(89,3),L[1,27:1] |
(89,4),R[2,20:2] |
(89,5),R[2,1,15:1] |
(89,6),R[3,1,12:1] |
(89,7),L[2,1,10:2] |
(89,8),R[6,9:2] |
(89,9),R[6,1,7:1] |
(89,10),R[7,1,6:1] |
(89,11),R[9,6:2] |
(89,12),L[2,2,5:2] |
(89,13),L[5,1,4:2] |
(89,14),R[2,1,2,4:2] |
(89,15),R[12,1,3:1] |
(89,16),L[3,1,1,3:1] |
(89,17),R[2,4,3:1] |
(89,18),R[15,1,2:1] |
(89,19),R[4,2,1,2:2] |
(89,20),L[4,2,2:2] |
(89,21),R[3,4,2:1] |
(89,22),R[20,2:2] |
(89,23),L[1,6,1,1:1] |
(89,24),R[1,2,2,1,1:1] |
(89,25),L[1,3,1,1,1:2] |
(89,26),R[1,1,2,2,1:1] |
(89,27),L[1,2,3,1:1] |
(89,28),L[1,1,5,1:1] |
(89,29),L[14,1:1] |
(89,30),R[27,1:1] |
(89,31),R[1,1,6,1:1] |
(89,32),R[1,1,1,3,1:2] |
(89,33),R[1,3,2,1:1] |
(89,34),L[1,1,1,1,1,1:2] K7-72 |
(89,35),R[1,5,1,1:1] |
(89,36),L[8,2:2] |
(89,37),R[5,2,2:2] |
(89,38),R[10,1,2:2] |
(89,39),R[3,1,1,3:1] |
(89,40),R[2,2,4:2] |
(89,41),R[4,1,5:2] |
(89,42),L[2,8:2] |
(89,43),R[1,14:1] |
(89,44),R[42:2] |
(90,1),R[86:1] $34^{85}3$ |
(90,7),R[4,1,10:1] |
(90,11),L[5,6:1] |
(90,13),R[10,1,4:1] |
(90,17),L[2,3,3:2] |
(90,19),R[2,1,2,1,2:1] |
(90,23),L[10,1,1:2] |
(90,29),L[1,9,1:2] |
(90,31),R[1,9,1:2] |
(90,37),R[3,3,2:2] |
(90,41),R[6,5:1] |
(90,43),R[1,1,10:2] |
(91,1),R[87:1] $34^{86}3$ |
(91,2),L[4,43:2] |
(91,3),R[1,28:2] |
(91,4),R[1,1,20:1] |
(91,5),R[3,16:2] |
(91,6),R[4,13:2] |
(91,8),L[1,2,9:2] |
(91,9),R[7,8:2] |
(91,10),R[8,7:2] |
(91,11),L[1,3,6:2] |
(91,12),L[2,1,1,5:1] |
(91,15),R[13,4:2]
|
(91,16),R[3,2,1,3:2] |
(91,17),R[3,1,2,3:2] |
(91,18),R[16,3:2] |
(91,19),R[1,1,3,1,2:1] |
(91,20),L[4,1,1,2:1] |
(91,22),R[1,7,2:1] |
(91,23),R[20,1,1:1] |
(91,24),R[2,1,3,1,1:1] |
(91,25),L[3,1,1,1,1:2] |
(91,27),R[1,2,1,2,1:1] |
(91,29),R[2,7,1:1] |
(91,30),R[28,1:2] |
(91,31),L[14,1:2] |
(91,32),L[2,5,1:1] |
(91,33),R[6,3,1:2] |
(91,34),R[9,2,1:2] |
(91,36),L[8,1,1:1] |
(91,37),L[1,5,2:1] |
(91,38),R[5,1,1,2:1] |
(91,40),R[1,1,1,1,3:2] |
(91,41),R[2,1,1,4:1] |
(91,43),L[1,1,8:1] |
(91,44),L[1,14:2] |
(91,45),R[43:2] |
(92,1),R[88:1] $34^{87}3$ |
(92,3),L[1,28:1] |
(92,5),L[2,16:1] |
(92,7),R[5,11:2] |
(92,9),L[4,8:1] |
(92,11),R[1,1,2,6:2] |
(92,13),R[11,5:2] |
(92,15),L[7,4:1] |
(92,17),R[1,2,2,3:2] |
(92,19),R[1,5,1,2:2] |
(92,21),L[1,1,1,2,2:2] |
(92,25),R[6,2,1,1:2] |
(92,27),R[3,2,2,1:2] |
(92,29),R[2,1,5,1:2] |
(92,31),R[28,1:1] |
(92,33),L[2,1,3,1:2] |
(92,35),R[2,2,1,1,1:2] |
(92,37),R[16,2:1] |
(92,39),L[1,3,1,2:2] |
(92,41),R[8,4:1] |
(92,43),R[4,7:1] |
(92,45),L[22:1] |
(93,1),R[89:1] $34^{88}3$ |
(93,2),L[4,44:2] |
(93,4),R[2,21:2] |
(93,5),L[1,1,16:2] |
(93,7),L[3,11:1] |
(93,8),L[1,1,1,9:1] |
(93,10),R[1,3,7:1] |
(93,11),R[3,2,6:1] |
(93,13),L[6,5:1] |
(93,14),R[2,1,1,1,4:1] |
(93,16),R[1,4,1,3:2] |
(93,17),R[6,2,3:1] |
(93,19),L[8,1,2:2] |
(93,20),R[4,1,1,1,2:1] |
(93,22),L[2,4,2:2] |
(93,23),R[21,2:2] |
(93,25),R[1,1,1,2,1,1:2] |
(93,26),R[1,1,2,1,1,1:2] |
(93,28),R[7,3,1:1] |
(93,29),R[3,1,4,1:2] |
(93,32),L[1,9,1:1] |
(93,34),L[3,1,2,1:2] |
(93,35),R[9,1,1,1:1] |
(93,37),R[16,1,1:2] |
(93,38),R[2,4,2:2] |
(93,40),R[11,3:1] |
(93,41),L[1,2,1,3:2] |
(93,43),R[5,6:1] |
(93,44),R[2,1,8:2] |
(93,46),R[44:2] |
(94,1),R[90:1] $34^{89}3$ |
(94,3),R[1,29:2] |
(94,5),R[2,1,16:1] |
(94,7),R[1,2,11:1] |
(94,9),R[2,2,8:1] |
(94,11),R[3,1,1,6:2] |
(94,13),R[1,4,5:1] |
(94,15),R[1,1,3,4:2] |
(94,17),R[6,1,1,3:2] |
(94,19),R[16,1,2:1] |
(94,21),R[8,2,2:1] |
(94,23),L[11,2:1] |
(94,25),R[4,3,1,1:2] |
(94,27),R[11,2,1:1] |
(94,29),R[5,4,1:1] |
(94,31),R[29,1:2] |
(94,33),L[1,1,5,1:2] |
(94,35),L[5,2,1:1] |
(94,37),L[1,5,1,1:2] |
(94,39),L[3,2,2:1] |
(94,41),L[2,2,3:1] |
(94,43),L[1,2,5:1] |
(94,45),R[2,11:1] |
(95,1),R[91:1] $34^{90}3$ |
(95,2),L[4,45:2] |
(95,3),L[1,29:1] |
(95,4),R[1,1,21:1] |
(95,6),R[3,1,13:1] |
(95,7),R[1,1,1,11:2] |
(95,8),R[5,1,9:1] |
(95,9),R[2,1,1,8:2] |
(95,11),R[1,1,1,1,6:1] |
(95,12),R[9,1,5:1] |
(95,13),R[2,3,5:1] |
(95,14),L[1,3,1,4:1] |
(95,16),R[13,1,3:1] |
(95,17),R[1,2,1,1,3:1] |
(95,18),L[1,1,3,3:1] |
(95,21),R[8,1,1,2:2] |
(95,22),R[5,3,2:1] |
(95,23),L[1,7,2:2] |
(95,24),R[21,1,1:1] |
(95,26),R[6,1,1,1,1:1] |
(95,27),R[11,1,1,1:2] |
(95,28),R[3,1,1,2,1:1] |
(95,29),L[1,1,1,3,1:2] |
(95,31),L[15,1:1] |
(95,32),R[29,1:1] |
(95,33),R[2,7,1:2] |
(95,34),R[4,1,3,1:1] |
(95,36),R[1,3,1,1,1:2] |
(95,37),R[3,3,1,1:1] |
(95,39),L[2,3,2:1] |
(95,41),L[6,3:2] |
(95,42),L[4,1,3:1] |
(95,43),L[3,1,4:1] |
(95,44),L[3,6:2] |
(95,46),R[1,15:1] |
(95,47),R[45:2] |
(96,1),R[92:1] $34^{91}3$ |
(96,5),R[3,17:2] |
(96,7),L[2,1,11:2] |
(96,11),L[1,2,1,6:1] |
(96,13),L[1,1,2,5:1] |
(96,17),R[3,1,1,1,3:1] |
(96,19),R[17,3:2] |
(96,23),R[1,1,5,2:2] |
(96,25),R[2,5,1,1:2] |
(96,29),L[4,3,1:2] |
(96,31),R[1,10,1:1] |
(96,35),R[6,1,2,1:1] |
(96,37),R[5,2,1,1:1] |
(96,41),R[11,1,2:2] |
(96,43),R[1,3,4:2] |
(96,47),L[23:1] |
(97,1),R[93:1] $34^{92}3$ |
(97,2),L[4,46:2] |
(97,3),R[1,30:2] |
(97,4),R[2,22:2] |
(97,5),L[2,17:1] |
(97,6),R[4,14:2] |
(97,7),R[4,1,11:1] |
(97,8),R[6,10:2] |
(97,9),L[3,1,8:2] |
(97,10),R[1,2,1,7:2] |
(97,11),L[4,1,6:2] |
(97,12),R[10,6:2] |
(97,13),R[4,2,5:1] |
(97,14),R[11,1,4:1] |
(97,15),R[5,2,4:1] |
(97,16),R[14,4:2] |
(97,17),L[2,2,1,3:1] |
(97,18),R[1,1,1,2,3:1] |
(97,19),L[9,3:1] |
(97,20),L[1,5,1,2:1] |
(97,21),L[1,1,1,1,1,2:1] |
(97,22),R[2,2,2,2:2] |
(97,23),L[1,1,4,2:1] |
(97,24),R[22,2:2] |
(97,25),R[1,7,1,1:2] |
(97,26),L[2,1,2,1,1:2] |
(97,27),R[3,2,1,1,1:1] |
(97,28),L[6,2,1:2] |
(97,29),R[7,1,2,1:2] |
(97,30),L[3,4,1:2] |
(97,31),R[1,1,7,1:2] |
(97,32),R[30,1:2] |
(97,33),L[15,1:2] |
(97,34),R[2,1,5,1:1] |
(97,35),L[1,2,3,1:2] |
(97,36),L[1,3,2,1:2] |
(97,37),R[2,1,1,1,1,1:1] |
(97,38),R[2,4,1,1:1] |
(97,39),R[17,2:1] |
(97,40),R[3,1,2,2:1] |
(97,41),R[1,1,2,1,2:2] |
(97,42),R[1,4,3:2] |
(97,43),R[8,1,3:2] |
(97,44),R[6,1,4:2] |
(97,45),R[1,2,6:2] |
(97,46),R[3,9:1] |
(97,47),L[1,15:2] |
(97,48),R[46:2] |
(98,1),R[94:1] $34^{93}3$ |
(98,3),L[1,30:1] |
(98,5),L[1,1,17:2] |
(98,9),R[6,1,8:1] |
(98,11),R[8,1,6:1] |
(98,13),R[4,1,1,5:2] |
(98,15),R[5,1,1,4:2] |
(98,17),R[2,3,1,3:2] |
(98,19),R[1,6,3:1] |
(98,23),R[3,1,3,2:2] |
(98,25),L[11,1,1:2] |
(98,27),R[1,2,1,1,1,1:2] |
(98,29),R[1,1,1,1,2,1:2] |
(98,31),R[3,6,1:1] |
(98,33),R[30,1:1] |
(98,37),L[5,1,1,1:2] |
(98,39),R[17,1,1:2] |
(98,41),L[3,1,1,2:2] |
(98,43),L[2,1,1,3:2] |
(98,45),L[1,1,1,5:2] |
(98,47),R[1,1,11:2] |
(99,1),R[95:1] $34^{94}3$ |
(99,2),L[4,47:2] |
(99,4),R[1,1,22:1] |
(99,5),R[2,1,17:1] |
(99,7),R[5,12:2] |
(99,8),L[1,2,10:2] |
(99,10),R[7,1,7:1] |
(99,13),L[1,1,1,1,5:2] |
(99,14),R[12,5:2] |
(99,16),R[1,5,4:1] |
(99,17),L[1,4,1,3:1] |
(99,19),R[1,1,4,3:2] |
(99,20),R[17,1,2:1] |
(99,23),L[3,3,2:2] |
(99,25),R[22,1,1:1] |
(99,26),R[3,4,1,1:2] |
(99,28),L[6,1,1,1:1] |
(99,29),L[2,2,2,1:1] |
(99,31),R[4,5,1:1] |
(99,32),L[1,10,1:2] |
(99,34),R[1,10,1:2] |
(99,35),R[3,1,4,1:1] |
(99,37),R[10,2,1:2] |
(99,38),R[5,1,1,1,1:2] |
(99,40),L[9,2:2] |
(99,41),R[1,2,2,2:1] |
(99,43),R[2,3,3:2] |
(99,46),R[1,1,1,6:1] |
(99,47),L[2,9:2] |
(99,49),R[47:2] |
(100,1),R[96:1] $34^{95}3$ |
(100,3),R[1,31:2] |
(100,7),L[3,12:1] |
(100,9),R[7,9:2] |
(100,11),R[9,7:2] |
(100,13),R[2,2,1,5:2] |
(100,17),L[7,1,3:2] |
(100,19),R[2,1,3,3:2] |
(100,21),R[3,3,1,2:2] |
(100,23),R[5,1,2,2:2] |
(100,27),L[1,2,2,1,1:2] |
(100,29),R[1,4,2,1:2] |
(100,31),R[1,2,4,1:2] |
(100,33),R[31,1:2] |
(100,37),R[1,1,2,2,1:2] |
(100,39),L[2,3,1,1:2] |
(100,41),L[1,1,3,2:2] |
(100,43),R[12,3:1] |
(100,47),R[3,1,7:2] |
(100,49),L[24:1] |